Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Ischemia depletes dystrophin and inhibits protein synthesis in the canine heart: mechanisms of myocardial ischemic injury.

  • Manuel Rodríguez‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2005‎

In this study we tested our previous hypothesis that ischemia is a multifactorial injurious event involving all components of the myocyte simultaneously. This hypothesis was based on ultrastructural findings and was now tested again by protein analysis of sarcolemmal structural proteins and of markers of transcriptional and translational activities. This knowledge may help to clarify the cellular mechanisms involved in progression of acute ischemic myocardial injury and reperfusion. Therefore, we investigated all three intracellular/extracellular linkage systems of the sarcolemma using antibodies against dystrophin, beta-dystroglycan, gamma-sarcoglycan, vinculin, beta1-integrin, laminin, and spectrin. In addition, antibodies were used to evaluate membrane permeability (albumin), transcriptional efficacy (non-snRNP splicing factor SC-35), and translational capacity (phosphorylated p70 ribosomal protein S6 kinase). Tissue samples were obtained from a canine model of regional myocardial ischemia (90 min or 4.5 h) with or without reperfusion. Immunoconfocal microscopy and Western blotting revealed that the rank order of sensitivity was the following: dystrophin, beta-dystroglycan, gamma-sarcoglycan, vinculin, spectrin, integrin and laminin. Different levels of dystrophin loss indicate reversible/irreversible injury as established by albumin uptake and electron microscopy. Dystrophin depletion closely coincided with generally depressed transcription and translation. These changes occurred simultaneously in a time-dependent manner and persisted during reperfusion. In conclusion, damage of the different structural proteins results in membrane destabilization and disruption of the contractile apparatus from the sarcolemma. These changes, concomitantly associated with disturbances in transcription and translation, are major mechanisms determining the transition to irreversibility of myocardial ischemic injury and confirm our hypothesis that ischemia is a multifactorial injurious event involving all components of the cardiac myocyte.


Expression profiling of cardiac genes in Tako-Tsubo cardiomyopathy: insight into a new cardiac entity.

  • Holger M Nef‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2008‎

Tako-Tsubo cardiomyopathy (TTC) is characterized by a transient contractile dysfunction, but its specific pathomechanism remains unknown. Thus, we performed a systematic expression profiling of genes by microarray analysis in the acute phase and after functional recovery. We studied 3 female patients presenting with TTC. Complementary RNA was isolated from left ventricular biopsies taken in the acute phase (group A) and after functional recovery (group B). It was profiled for gene expression using cDNA microarrays. Functionally related genes were determined with the Gene Set Enrichment Analysis (GSEA) bioinformatic tool. Validation of selected genes was performed by means of real-time PCR and immunohistochemistry. In group A, different functional gene sets, such as Nrf2-induced genes, triggered by oxidative stress, and protein biosynthesis were significantly overrepresented among the upregulated targets. Increased transcription of GPX1, CAT, RPS6, and eIF4E was confirmed by RT-PCR. The targets of the Akt/PKB signaling showed significant upregulation in both groups. Immunohistochemistry showed that the downstream targets NF-kappaB and BcL-X(L) are upregulated and activated. Gene sets involved in energy metabolism (oxidative phosphorylation, mitochondrial genes) showed no differences in group A but were overexpressed in group B. This study demonstrated a significant contribution of oxidative stress to the pathomechanism of TTC; it is possibly triggered by excess catecholamine. Increased protein biosynthesis and an activated cell survival cascade can be interpreted as potential compensatory mechanisms. After functional recovery, processes involved in energy metabolism play a pivotal role, thereby potentially contributing to the normalization of contractile function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: