Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Carboxymethyl Bacterial Cellulose from Nata de Coco: Effects of NaOH.

  • Pornchai Rachtanapun‎ et al.
  • Polymers‎
  • 2021‎

Bacterial cellulose from nata de coco was prepared from the fermentation of coconut juice with Acetobacter xylinum for 10 days at room temperature under sterile conditions. Carboxymethyl cellulose (CMC) was transformed from the bacterial cellulose from the nata de coco by carboxymethylation using different concentrations of sodium hydroxide (NaOH) and monochloroacetic acid (MCA) in an isopropyl (IPA) medium. The effects of various NaOH concentrations on the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, morphology and the thermal properties of carboxymethyl bacterial cellulose powder from nata de coco (CMCn) were evaluated. In the carboxymethylation process, the optimal condition resulted from NaOH amount of 30 g/100 mL, as this provided the highest DS value (0.92). The crystallinity of CMCn declined after synthesis but seemed to be the same in each condition. The mechanical properties (tensile strength and percentage of elongation at break), water vapor permeability (WVP) and morphology of CMCn films obtained from CMCn synthesis using different NaOH concentrations were investigated. The tensile strength of CMCn film synthesized with a NaOH concentration of 30 g/100 mL increased, however it declined when the amount of NaOH concentration was too high. This result correlated with the DS value. The highest percent elongation at break was obtained from CMCn films synthesized with 50 g/100 mL NaOH, whereas the elongation at break decreased when NaOH concentration increased to 60 g/100 mL.


Reaction Mechanism and Mechanical Property Improvement of Poly(Lactic Acid) Reactive Blending with Epoxy Resin.

  • Krittameth Kiatiporntipthak‎ et al.
  • Polymers‎
  • 2021‎

Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that presented a smooth fracture surface with a high epoxy content. The glass transition temperature of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA and the epoxy resin. The Vicat softening temperature of the PLA was 59 °C and increased to 64.6 °C for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends.


Corn starch reactive blending with latex from natural rubber using Na+ ions augmented carboxymethyl cellulose as a crosslinking agent.

  • Noppol Leksawasdi‎ et al.
  • Scientific reports‎
  • 2021‎

A mixture of corn starch and glycerol plasticizer (CSG) was blended with latex natural rubber (LNR) and carboxymethyl cellulose (CMC). The addition of 10 phr of CMC improved the Young's modulus (6.7 MPa), tensile strength (8 MPa), and elongation at break (80%) of the CSG/LNR blend. The morphology of the CSG/LNR/CMC blends showed a uniform distribution of LNR particles (1-3 µm) in the CSG matrix. The addition of CMC enhanced the swelling ability and water droplet contact angle of the blends owing to the swelling properties, interfacial crosslinking, and amphiphilic structure of CMC. Fourier transform infrared spectroscopy confirmed the reaction between the C=C bond of LNR and the carboxyl groups (-COO-) of CMC, in which the Na+ ions in CMC acted as a catalyst. Notably, the mechanical properties of the CSG/LNR/CMC blend were improved owing to the miscibility of CSG/CMC and the CMC/LNR interfacial reaction. The CSG/LNR/CMC biodegradable polymer with high mechanical properties and interfacial tension can be used for packaging, agriculture, and medical applications.


Effect of Monochloroacetic Acid on Properties of Carboxymethyl Bacterial Cellulose Powder and Film from Nata de Coco.

  • Pornchai Rachtanapun‎ et al.
  • Polymers‎
  • 2021‎

Nata de coco has been used as a raw material for food preparation. In this study, the production of carboxymethyl cellulose (CMC) film from nata de coco and the effect of monochloroacetic acid on carboxymethyl bacterial cellulose (CMCn) and its film were investigated. Bacterial cellulose from nata de coco was modified into CMC form via carboxymethylation using various concentrations of monochloroacetic acid (MCA) at 6, 12, 18, and 24 g per 15 g of cellulose. The results showed that different concentrations of MCA affected the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, and morphology of CMCn. The optimum treatment for carboxymethylation was found using 24 g of MCA per 15 g of cellulose, which provided the highest DS at 0.83. The morphology of CMCn was related to DS value; a higher DS value showed denser and smoother surface than nata de coco cellulose. The various MCA concentrations increased the mechanical properties (tensile strength and percentage of elongation at break) and water vapor permeability of CMCn, which were related to the DS value.


Effect of Egg-Coating Material Properties by Blending Cassava Starch with Methyl Celluloses and Waxes on Egg Quality.

  • Pornchai Rachtanapun‎ et al.
  • Polymers‎
  • 2021‎

An egg-coating material was developed to extend the shelf-life and freshness of eggs by blending cassava starch (CS) with gelling agents and waxes. The effects of the properties of this egg coating on egg quality were investigated. Hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), beeswax, and paraffin wax were used. CS blended with low-molecular-weight paraffin (Paraffin(L)) and CMC coating material displayed a tensile strength of 4 MPa, 34% elongation at break, 0.0039 g day-1 m-2 water vapor permeability, and a water contact angle of 89° at 3 min. Eggs coated with CS/CMC/Paraffin(L) solutions had a Haugh unit value of 72 (AA grade) and exhibited a weight loss of 2.4% in 4 weeks. CMC improved the compatibility of CS and Paraffin(L). This improvement and the hydrophobicity of Paraffin(L) provided suitable mechanical and water-resistance properties to the coating material that helped to maintain the quality of the coated AA-grade eggs with low weight loss for 4 weeks.


Physical Properties of Carboxymethyl Cellulose from Palm Bunch and Bagasse Agricultural Wastes: Effect of Delignification with Hydrogen Peroxide.

  • Rungsiri Suriyatem‎ et al.
  • Polymers‎
  • 2020‎

The aim of this work was to synthesize carboxymethyl cellulose (CMC) and produce CMC films from the cellulose of palm bunch and bagasse agricultural waste. The effect of various amounts of H2O2 (0-40% v/v) during delignification on the properties of cellulose, CMC, and CMC films was studied. As the H2O2 content increased, yield and the lignin content of the cellulose from palm bunch and bagasse decreased, whereas lightness (L*) and whiteness index (WI) increased. FTIR confirmed the substitution of a carboxymethyl group on the cellulose structure. A higher degree of substitution of CMC from both sources was found when 20%-30% H2O2 was employed. The trend in the L* and WI values of each CMC and CMC film was related to those values in their respective cellulose. Bleaching each cellulose with 20% H2O2 provided the cellulose with the highest viscosity and the CMC films with the greatest mechanical (higher tensile strength and elongation at break) and soluble attributes, but the lowest water vapor barrier. This evidence indicates that cellulose delignification with H2O2 has a strong effect on the appearance and physical properties of both CMCs.


Sericin cocoon bio-compatibilizer for reactive blending of thermoplastic cassava starch.

  • Thanongsak Chaiyaso‎ et al.
  • Scientific reports‎
  • 2021‎

Cassava starch was blended with glycerol to prepare thermoplastic starch (TPS). Thermoplastic starch was premixed with sericin (TPSS) by solution mixing and then melt-blended with polyethylene grafted maleic anhydride (PEMAH). The effect of sericin on the mechanical properties, morphology, thermal properties, rheology, and reaction mechanism was investigated. The tensile strength and elongation at break of the TPSS10/PEMAH blend were improved to 12.2 MPa and 100.4%, respectively. The TPS/PEMAH morphology presented polyethylene grafted maleic anhydride particles (2 μm) dispersed in the thermoplastic starch matrix, which decreased in size to approximately 200 nm when 5% sericin was used. The melting temperature of polyethylene grafted maleic anhydride (121 °C) decreased to 111 °C because of the small crystal size of the polyethylene grafted maleic anhydride phase. The viscosity of TPS/PEMAH increased with increasing sericin content because of the chain extension. Fourier-transform infrared spectroscopy confirmed the reaction between the amino groups of sericin and the maleic anhydride groups of polyethylene grafted maleic anhydride. This reaction reduced the interfacial tension between thermoplastic starch and polyethylene grafted maleic anhydride, which improved the compatibility, mechanical properties, and morphology of the blend.


High Substitution Synthesis of Carboxymethyl Chitosan for Properties Improvement of Carboxymethyl Chitosan Films Depending on Particle Sizes.

  • Sarinthip Thanakkasaranee‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

This study investigated the effect of chitosan particle sizes on the properties of carboxymethyl chitosan (CMCh) powders and films. Chitosan powders with different particle sizes (75, 125, 250, 450 and 850 µm) were used to synthesize the CMCh powders. The yield, degree of substitution (DS), and water solubility of the CMCh powders were then determined. The CMCh films prepared with CMCh based on chitosan with different particle sizes were fabricated by a solution casting technique. The water solubility, mechanical properties, and water vapor transmission rate (WVTR) of the CMCh films were measured. As the chitosan particle size decreased, the yield, DS, and water solubility of the synthesized CMCh powders increased. The increase in water solubility was due to an increase in the polarity of the CMCh powder, from a higher conversion of chitosan into CMCh. In addition, the higher conversion of chitosan was also related to a higher surface area in the substitution reaction provided by chitosan powder with a smaller particle size. As the particle size of chitosan decreased, the tensile strength, elongation at break, and WVTR of the CMCh films increased. This study demonstrated that a greater improvement in water solubility of the CMCh powders and films can be achieved by using chitosan powder with a smaller size.


Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End.

  • Warinporn Klunklin‎ et al.
  • Polymers‎
  • 2020‎

Cellulose from Asparagus officinalis stalk end was extracted and synthesized to carboxymethyl cellulose (CMCas) using monochloroacetic acid (MCA) via carboxymethylation reaction with various sodium hydroxide (NaOH) concentrations starting from 20% to 60%. The cellulose and CMCas were characterized by the physical properties, Fourier Transform Infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, mechanical properties of CMCas films were also investigated. The optimum condition for producing CMCas was found to be 30% of NaOH concentration for the carboxymethylation reaction, which provided the highest percent yield of CMCas at 44.04% with the highest degree of substitution (DS) at 0.98. The melting point of CMCas decreased with increasing NaOH concentrations. Crystallinity of CMCas was significantly deformed (p < 0.05) after synthesis at a high concentration. The L* value of the CMCas was significantly lower at a high NaOH concentration compared to the cellulose. The highest tensile strength (44.59 MPa) was found in CMCas film synthesized with 40% of NaOH concentration and the highest percent elongation at break (24.99%) was obtained in CMCas film treated with 30% of NaOH concentration. The applications of asparagus stalk end are as biomaterials in drug delivery system, tissue engineering, coating, and food packaging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: