Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.

  • Jifeng Zhang‎ et al.
  • PloS one‎
  • 2013‎

The prevalence of type 2 diabetes (T2D) is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1), require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.


Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease.

  • Guisong Wang‎ et al.
  • PloS one‎
  • 2018‎

High density lipoprotein (HDL) cholesterol levels and cholesterol efflux capacity (CEC) are inversely correlated with coronary artery disease (CAD) risk. Myeloperoxidase (MPO) derived oxidants and HDL proteome changes are implicated in HDL dysfunction in subjects with CAD in the United States; however, the effect of MPO on HDL function and HDL proteome in ethnic Chinese population is unknown. We recruited four matched ethnic Chinese groups (20 patients each): subjects with 1) low HDL levels (HDL levels in men <40mg/dL and women <50mg/dL) and non-CAD (identified by coronary angiography or cardiac CT angiography); 2) low HDL and CAD; 3) high HDL (men >50mg/dL; women >60mg/dL) with no CAD; and 4) high HDL with CAD. Serum cytokines, serum MPO levels, serum CEC, MPO-oxidized HDL tyrosine moieties, and HDL proteome were assessed by mass spectrometry individually in the four groups. The cytokines, MPO levels, and HDL proteome profiles were not significantly different between the four groups. As expected, CEC was depressed in the entire CAD group but more specifically in the CAD low-HDL group. HDL of CAD subjects had significantly higher 3-nitrotyrosine than non-CAD subjects, but the MPO-specific 3-chlorotyrosine was unchanged; CEC in the CAD low-HDL group did not correlate with either HDL 3-chlorotyrosine or 3-nitrotyrosine levels. Neither 3-chlorotyrosine, which is MPO-specific, nor 3-nitrotyrosine generated from MPO or other reactive nitrogen species was associated with CEC. MPO mediated oxidative stress and HDL proteome composition changes are not the primary cause HDL dysfunction in Chinese subjects with CAD. These studies highlight ethnic differences in HDL dysfunction between United States and Chinese cohorts raising possibility of unique pathways of HDL dysfunction in this cohort.


Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression.

  • Bing Pan‎ et al.
  • PloS one‎
  • 2012‎

Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction.


Platelet-derived growth factor induces Rad expression through Egr-1 in vascular smooth muscle cells.

  • Yan Luo‎ et al.
  • PloS one‎
  • 2011‎

Ras associated with diabetes (Rad) inhibits vascular lesion formation by reducing the attachment and migration of vascular smooth muscle cells (VSMCs). However, the transcriptional regulation of Rad in VSMCs is unclear.


Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells.

  • Dong Liu‎ et al.
  • PloS one‎
  • 2012‎

Increase in mitochondrial biogenesis has been shown to accompany brown and white adipose cell differentiation. Prohibitins (PHBs), comprised of two evolutionarily conserved proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), are present in a high molecular-weight complex in the inner membrane of mitochondria. However, little is known about the effect of mitochondrial PHBs in adipogenesis. In the present study, we demonstrate that the levels of both PHB1 and PHB2 are significantly increased during adipogenesis of 3T3-L1 preadipocytes, especially in mitochondria. Knockdown of PHB1 or PHB2 by oligonucleotide siRNA significantly reduced the expression of adipogenic markers, the accumulation of lipids and the phosphorylation of extracellular signal-regulated kinases. In addition, fragmentation of mitochondrial reticulum, loss of mitochondrial cristae, reduction of mitochondrial content, impairment of mitochondrial complex I activity and excessive production of ROS were observed upon PHB-silencing in 3T3-L1 cells. Our results suggest that PHBs are critical mediators in promoting 3T3-L1 adipocyte differentiation and may be the potential targets for obesity therapies.


MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

  • Zhou Zhou‎ et al.
  • PloS one‎
  • 2013‎

Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/-) developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/-) bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12) deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/-) mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/-) mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/-) mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.


Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

  • Ji Zhang‎ et al.
  • PloS one‎
  • 2016‎

Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.


Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3.

  • He Meng‎ et al.
  • PloS one‎
  • 2012‎

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: