Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

The Use of Mobile Applications for the Diagnosis and Treatment of Tumors in Orthopaedic Oncology - a Systematic Review.

  • J Berger-Groch‎ et al.
  • Journal of medical systems‎
  • 2021‎

The use of smartphone apps is an essential part of everyday life. Mobile applications offer enormous opportunities for dealing with challenges in public health, and their number increases every day. This paper aims to review the existing literature on mobile applications in orthopaedic oncology and to summarize the current mobile applications for musculoskeletal tumors. A systematic literature review was conducted regarding articles on mobile applications in orthopaedic and trauma surgery. The focus was on identifying mobile applications that can be used in the treatment of patients with musculoskeletal tumors. Two reviewers independently assessed study eligibility, extracted data, and appraised methodological quality. In addition, the Apple App Store and Google Play Store were searched for suitable mobile applications. Ninety-one articles describing a mobile application in orthopaedic and trauma surgery were identified. Three articles focused on a mobile application for musculoskeletal tumors. Additionally, seven mobile applications were available in the App/Play Stores dealing with bone or soft tissue tumors in orthopaedic oncology without corresponding scientific articles. Increasing numbers of mobile applications are being developed in orthopaedic and trauma surgery. Currently, only three scientific articles on mobile applications in orthopaedic oncology are present, yet several more applications are available without scientific medical evaluation. Since mobile applications can facilitate the everyday life of orthopaedic and trauma surgeons, it is worthwhile to be aware of new developments in this field. A regular scientific evaluation of the subject is important in order to classify the significance of these applications.


New complex Ph' translocation t (10; 14; 22) in bone marrow cells and in PHA-stimulated peripheral blood cultures in chronic myelocytic leukaemia.

  • F Shabtai‎ et al.
  • Journal of cancer research and clinical oncology‎
  • 1980‎

A patient with chronic myelocytic leukaemia (CML) and a new complex Philadelphia chromosome (Ph') translocation, t (10; 14; 22), is described. This three way Ph' translocation not involving chromosome 9 was present in the majority of the bone marrow cells, as well as in a great proportion of metaphases from phytohaemagglutinin (PHA) stimulated peripheral blood cultures. The possibility that the Ph' translocation was present also in lymphocytes is discussed and at this regard the involvement of chromosome 14 is of interest considering the documented non random involvement of chromosome 14 in lymphoid malignancies.


Transanal drainage tube reduces rate and severity of anastomotic leakage in patients with colorectal anastomosis: A case controlled study.

  • A Brandl‎ et al.
  • Annals of medicine and surgery (2012)‎
  • 2016‎

The aim of this study was to investigate the clinical usefulness of the placement of a transanal drainage tube to prevent anastomotic leakage in colorectal anastomoses.


A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation.

  • T Shimazaki‎ et al.
  • The EMBO journal‎
  • 1999‎

Both insulin-like growth factor-I (IGF-I) and brain-derived neurotrophic factor (BDNF) induce the differentiation of post-mitotic neuronal precursors, derived from embryonic day 14 (E14) mouse striatal multipotent stem cells. Here we ask whether this differentiation is mediated by a member of the POU-III class of neural transcription factors. Exposure of stem cell progeny to either IGF-I or BDNF resulted in a rapid upregulation of Brn-4 mRNA and protein. Indirect immunocytochemistry with Brn-4 antiserum showed that the protein was expressed in newly generated neurons. Other POU-III genes, such as Brn-1 and Brn-2, did not exhibit this upregulation. Basic FGF, a mitogen for these neuronal precursors, did not stimulate Brn-4 expression. In the E14 mouse striatum, Brn-4-immunoreactive cells formed a boundary between the nestin-immunoreactive cells of the ventricular zone and the beta-tubulin-immunoreactive neurons migrating into the mantle zone. Loss of Brn-4 function during the differentiation of stem cell-derived or primary E14 striatal neuron precursors, by inclusion of antisense oligonucleotides, caused a reduction in the number of beta-tubulin-immunoreactive neurons. These findings suggest that Brn-4 mediates, at least in part, the actions of epigenetic signals that induce striatal neuron-precursor differentiation.


GARP: a key receptor controlling FOXP3 in human regulatory T cells.

  • M Probst-Kepper‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease.


Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke.

  • A U Hicks‎ et al.
  • Neuroscience‎
  • 2007‎

Stroke patients suffer from severe impairments and significant effort is under way to develop therapies to improve functional recovery. Stem cells provide a promising form of therapy to replace neuronal circuits lost to injury. Indeed, previous studies have shown that a variety of stem cell types can provide some functional recovery in animal models of stroke. However, it is unlikely that replacement therapy alone will be sufficient to maximize recovery. The aim of the present study was to determine if rodent stem cell transplants combined with rehabilitation resulted in enhanced functional recovery after focal ischemia in rats. Middle cerebral artery occlusion was induced by injection of the vasoconstrictive peptide endothelin-1 adjacent to the middle cerebral artery. Seven days after stroke the rats received adult neural stem cell transplants isolated from mouse subventricular zone or vehicle injection and then subsequently were housed in enriched or standard conditions. The rats in the enriched housing also had access to running wheels once a week. Enriched housing and voluntary running exercise enhanced migration of transplanted stem cells toward the region of injury after stroke and there was a trend toward increased survival of stem cells. Enrichment also increased the number of endogenous progenitor cells in the subventricular zone of transplanted animals. Finally, functional recovery measured in the cylinder test was facilitated only when the stem cell transplants were combined with enrichment and running exercise 7 days after the transplant. These results suggest that the ability of transplanted stem cells in promoting recovery can be augmented by environmental factors such as rehabilitation.


BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors.

  • S Ahmed‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1995‎

We have previously reported the isolation of an EGF-responsive precursor from the embryonic and adult mouse striatum. This precursor exhibits self renewal and the ability to produce a sphere of undifferentiated cells which can be induced to differentiate into neurons and glia. RT-PCR analysis of these spheres of undifferentiated cells revealed the expression of mRNA for the trkB neurotrophin receptor, both with and without the catalytic domain, and little or no expression of trkA or trkC. We examined the actions of BDNF on the fate of EGF-generated neural precursors. Ten days after a one-time exposure to BDNF, single EGF-generated spheres showed a twofold increase in neuron number and a marked enhancement in neurite outgrowth. Examination of neuronal nuclei with immunochemical probes for c-fos and bromodeoxyuridine revealed that the actions of BDNF were directly upon neuronal cells and did not involve division of neuronal precursors. The twofold increase in neuronal number due to BDNF, observed after 10 d in vitro, was significantly reduced after 21 d in vitro and was not apparent at 27 d in vitro. Quantitative analyses revealed that while repeated application of BDNF did not prevent the loss of neuron number over time, it did result in a significant increase in neurite numbers. Moreover, delayed addition of BDNF mimicked the increase in neuronal numbers seen when BDNF was present throughout. These BDNF actions did not appear to involve the enhancement of a novel neuronal phenotype, with all effects being due to increase in the numbers and neurite outgrowth of neurons that colocalize GABA and substance P. These findings suggest that BDNF markedly enhances the antigenic and morphologic differentiation of EGF-generated neuronal precursors. BDNF alone does not appear to act as a survival factor for neuronal precursors nor is it sufficient for preventing their death over time.


A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes.

  • B A Reynolds‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1992‎

The mitogenic actions of epidermal growth factor (EGF) were examined in low-density, dissociated cultures of embryonic day 14 mouse striatal primordia, under serum-free defined conditions. EGF induced the proliferation of single progenitor cells that began to divide between 5 and 7 d in vitro, and after 13 d in vitro had formed a cluster of undifferentiated cells that expressed nestin, an intermediate filament present in neuroepithelial stem cells. In the continued presence of EGF, cells migrated from the proliferating core and differentiated into neurons and astrocytes. The actions of EGF were mimicked by the homolog transforming growth factor alpha (TGF alpha), but not by NGF, basic fibroblast growth factor, platelet-derived growth factor, or TGF beta. In EGF-generated cultures, cells with neuronal morphology contained immunoreactivity for GABA, substance P, and methionine-enkephalin, three neurotransmitters of the adult striatum. Amplification of embryonic day 14 striatal mRNA by using reverse transcription/PCR revealed mRNAs for EGF, TGF alpha, and the EGF receptor. These findings suggest that EGF and/or TGF alpha may act on a multipotent progenitor cell in the striatum to generate both neurons and astrocytes.


Activin co-operates with fibroblast growth factor 2 to regulate tyrosine hydroxylase expression in the basal forebrain ventricular zone progenitors.

  • M Daadi‎ et al.
  • Neuroscience‎
  • 1998‎

Activin and its cognate receptors are expressed during embryogenesis in the rapidly dividing cells of the basal forebrain ventricular zone. This finding prompted us to study the role of activin in regulating neurotransmitter phenotype expression and other aspects of the ventricular zone-derived progenitor cell differentiation. Although virtually ineffective alone, activin co-operated with fibroblast growth factor 2 to induce a rapid tyrosine hydroxylase-immunoreactivity in cultured ventricular zone progenitors. Northern analysis indicated that the increase in tyrosine hydroxylase-immunoreactivity was associated with increased tyrosine hydroxylase gene expression. Activin and fibroblast growth factor 2 action was specific to tyrosine hydroxylase, as it did not induce the expression of choline acetyltransferase, nor enhance the expression of glutamate decarboxylase. Cultures treated with the DNA replication marker bromodeoxyuridine revealed that both proliferating ventricular zone progenitors and their post-mitotic progeny were induced to express tyrosine hydroxylase. In these cultures, activin acted to reduce fibroblast growth factor 2 stimulated mitotic activity. Furthermore, activin permitted neuronal differentiation and survival of the ventricular zone progenitors after three days in vitro. Together these data demonstrate a novel role of activin and fibroblast growth factor 2 in regulating the fate of the embryonic basal forebrain ventricular zone progenitors.


Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain.

  • M M Daadi‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1999‎

We have explored the plastic ability of neuronal precursors to acquire different identities by manipulating their surrounding environment. Specifically, we sought to identify potential signals involved in the specification of forebrain dopaminergic neurons. Here we describe culture conditions under which tyrosine hydroxylase (TH) expression is induced in neuronal precursors, which were derived directly from the embryonic striatum and adult subependyma (SE) of the lateral ventricle or generated from multipotent forebrain stem cells. TH was successfully induced in all of these cell types by 24 hr exposure to basic fibroblast growth factor (FGF2) and glial cell conditioned media (CM). The greatest magnitude of the inductive action was on embryonic striatal precursors. Although FGF2 alone induced limited TH expression in striatal cells (1.1 +/- 0.2% of neurons), these actions were potentiated 17.5-fold (19.6 +/- 1.5% of neurons) when FGF2 was coadministered with B49 glial cell line CM. Of these TH-immunoreactive cells, approximately 15% incorporated bromodeoxyuridine (BrdU), indicating that they were newly generated, and 95% coexpressed the neurotransmitter GABA. To investigate whether precursors of the adult forebrain subependyma were competent to respond to the instructive actions of FGF2+CM, they were first labeled in vivo with a pulse of BrdU. Although none of the cells expressed TH in control, 0.2% of total cells showed TH immunoreactivity in FGF2+CM-treated cultures. Under these same conditions only, in vitro-generated precursors from epidermal growth factor-responsive stem cells exhibited TH expression in 10% of their total neuronal progeny. Regulation of neurotransmitter phenotype in forebrain neuronal precursors, by the synergistic action of FGF2 and glial-derived diffusible factors, may represent a first step in understanding how these cells are generated in the embryonic and adult brain and opens the prospect for their manipulation in vitro and in vivo for therapeutic use.


Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

  • B A Reynolds‎ et al.
  • Science (New York, N.Y.)‎
  • 1992‎

Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.


Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis.

  • S Weiss‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1996‎

Neural stem cells in the lateral ventricles of the adult mouse CNS participate in repopulation of forebrain structures in vivo and are amenable to in vitro expansion by epidermal growth factor (EGF). There have been no reports of stem cells in more caudal brain regions or in the spinal cord of adult mammals. In this study we found that although ineffective alone, EGF and basic fibroblast growth factor (bFGF) cooperated to induce the proliferation, self-renewal, and expansion of neural stem cells isolated from the adult mouse thoracic spinal cord. The proliferating stem cells, in both primary culture and secondary expanded clones, formed spheres of undifferentiated cells that were induced to differentiate into neurons, astrocytes, and oligodendrocytes. Neural stem cells, whose proliferation was dependent on EGF+bFGF, were also isolated from the lumbar/sacral segment of the spinal cord as well as the third and fourth ventricles (but not adjacent brain parenchyma). Although all of the stem cells examined were similarly multipotent and expandable, quantitative analyses demonstrated that the lateral ventricles (EGF-dependent) and lumbar/sacral spinal cord (EGF+bFGF-dependent) yielded the greatest number of these cells. Thus, the spinal cord and the entire ventricular neuroaxis of the adult mammalian CNS contain multipotent stem cells, present at variable frequency and with unique in vitro activation requirements.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: