Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

β-Cell Cre Expression and Reduced Ins1 Gene Dosage Protect Mice From Type 1 Diabetes.

  • Søs Skovsø‎ et al.
  • Endocrinology‎
  • 2022‎

A central goal of physiological research is the understanding of cell-specific roles of disease-associated genes. Cre-mediated recombineering is the tool of choice for cell type-specific analysis of gene function in preclinical models. In the type 1 diabetes (T1D) research field, multiple lines of nonobese diabetic (NOD) mice have been engineered to express Cre recombinase in pancreatic β cells using insulin promoter fragments, but tissue promiscuity remains a concern. Constitutive Ins1tm1.1(cre)Thor (Ins1Cre) mice on the C57/bl6-J background have high β-cell specificity with no reported off-target effects. We explored whether NOD:Ins1Cre mice could be used to investigate β-cell gene deletion in T1D disease modeling. We studied wild-type (Ins1WT/WT), Ins1 heterozygous (Ins1Cre/WT or Ins1Neo/WT), and Ins1 null (Ins1Cre/Neo) littermates on a NOD background. Female Ins1Neo/WT mice exhibited significant protection from diabetes, with further near-complete protection in Ins1Cre/WT mice. The effects of combined neomycin and Cre knockin in Ins1Neo/Cre mice were not additive to the Cre knockin alone. In Ins1Neo/Cre mice, protection from diabetes was associated with reduced insulitis at age 12 weeks. Collectively, these data confirm previous reports that loss of Ins1 alleles protects NOD mice from diabetes development and demonstrates, for the first time, that Cre itself may have additional protective effects. This has important implications for the experimental design and interpretation of preclinical T1D studies using β-cell-selective Cre in NOD mice.


Caloric Restriction Paradoxically Increases Adiposity in Mice With Genetically Reduced Insulin.

  • Derek A Dionne‎ et al.
  • Endocrinology‎
  • 2016‎

Antiadiposity effects of caloric restriction (CR) are associated with reduced insulin/IGF-1 signaling, but it is unclear whether the effects of CR would be additive to genetically reducing circulating insulin. To address this question, we examined female Ins1(+/-):Ins2(-/-) mice and Ins1(+/+):Ins2(-/-) littermate controls on either an ad libitum or 60% CR diet. Although Igf1 levels declined as expected, CR was unable to reduce plasma insulin levels in either genotype below their ad libitum-fed littermate controls. In fact, 53-week-old Ins1(+/-):Ins2(-/-) mice exhibited a paradoxical increase in circulating insulin in the CR group compared with the ad libitum-fed Ins1(+/-):Ins2(-/-) mice. Regardless of insulin gene dosage, CR mice had lower fasting glucose and improved glucose tolerance. Although body mass and lean mass predictably fell after CR initiation, we observed a significant and unexpected increase in fat mass in the CR Ins1(+/-):Ins2(-/-) mice. Specifically, inguinal fat was significantly increased by CR at 66 weeks and 106 weeks. By 106 weeks, brown adipose tissue mass was also significantly increased by CR in both Ins1(+/-):Ins2(-/-) and Ins1(+/+):Ins2(-/-) mice. Interestingly, we observed a clear whitening of brown adipose tissue in the CR groups. Mice in the CR group had altered daily energy expenditure and respiratory exchange ratio circadian rhythms in both genotypes. Multiplexed analysis of circulating hormones revealed that CR was associated with increased fasting and fed levels of the obesogenic hormone, glucose-dependent insulinotropic polypeptide. Collectively these data demonstrate CR has paradoxical effects on adipose tissue growth in the context of genetically reduced insulin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: