Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation.

  • Yuuki Obata‎ et al.
  • Nature communications‎
  • 2014‎

Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit's kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation.


Null anticarcinogenic effect of silymarin on diethylnitrosamine-induced hepatocarcinogenesis in rats.

  • Ryu Imamoto‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

The aim of this study was to investigate the anticarcinogenic effects of silymarin in diethylnitrosamine (DEN)-induced hepatocarcinogenic rat models. Severe and mild models of hepatocellular carcinoma (HCC) were generated by the intraperitoneal administration of 40 mg/kg DEN once a week for 18 weeks and 100 mg/kg DEN every 2 weeks for 6 weeks in male Wistar rats, respectively. In the severe and mild models of HCC, the rats were treated with 0.1 and 0.5% silymarin for 18 weeks and with 0.1% silymarin for 5 weeks, respectively. Serum transaminase levels were not significantly decreased by the silymarin treatment in either model. Macroscopic and microscopic features indicated that the silymarin-containing formulations did not significantly inhibit the hepatic tumor formation induced by DEN. Furthermore, immunohistochemical and western blot analyses demonstrated that the expression levels of proliferating cell nuclear antigen and glutathione S-transferase P, which are hepatocarcinogenic markers, were not significantly modified by the silymarin treatment. These results indicate that silymarin may not be considered as a candidate agent against hepatocarcinogenesis.


High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28.

  • Kunitake Higo‎ et al.
  • PloS one‎
  • 2013‎

Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.


Correlation between c-Met and ALDH1 contributes to the survival and tumor-sphere formation of ALDH1 positive breast cancer stem cells and predicts poor clinical outcome in breast cancer.

  • Yuka Nozaki‎ et al.
  • Genes & cancer‎
  • 2017‎

c-Met is a receptor-type tyrosine kinase, which is involved in a wide range of cellular responses such as proliferation, motility, migration and invasion. It has been reported to be overexpressed in various cancers. However, the role of c-Met in breast cancer stem cells (CSCs) still remains unclear. We herein, show that c-Met expression is significantly elevated in Basal-like type of breast cancer in comparison with other subtypes. High expression of c-Met strongly correlated with the expression of two CSC markers, ALDH1A3 and CD133 in breast cancers. In addition, breast cancers at tumor stage III-IV expressing both c-Methigh and ALDH1A3high had poor prognosis. Furthermore, treatment with c-Met inhibitors (Crizotinib, Foretinib, PHA-665752 and Tivantinib) in MDA-MB157 cells with high c-Met protein expression resulted in significant suppression in cell viability, contrary to MDA-MB468 cells with low c-Met protein expression. These c-Met inhibitors also suppressed cell viability and tumor-sphere formation of ALDH1high breast cancer cells with high c-Met expression. These results suggest that c-Met in ALDH1 positive CSCs seems to play an important role in breast cancer repopulation. Therefore, we conclude that c-Met is a potential therapeutic target in ALDH1 positive breast CSCs.


Mechanisms of translational regulation by a human eIF5-mimic protein.

  • Chingakham Ranjit Singh‎ et al.
  • Nucleic acids research‎
  • 2011‎

The translation factor eIF5 is an important partner of eIF2, directly modulating its function in several critical steps. First, eIF5 binds eIF2/GTP/Met-tRNA(i)(Met) ternary complex (TC), promoting its recruitment to 40S ribosomal subunits. Secondly, its GTPase activating function promotes eIF2 dissociation for ribosomal subunit joining. Finally, eIF5 GDP dissociation inhibition (GDI) activity can antagonize eIF2 reactivation by competing with the eIF2 guanine exchange factor (GEF), eIF2B. The C-terminal domain (CTD) of eIF5, a W2-type HEAT domain, mediates its interaction with eIF2. Here, we characterize a related human protein containing MA3- and W2-type HEAT domains, previously termed BZW2 and renamed here as eIF5-mimic protein 1 (5MP1). Human 5MP1 interacts with eIF2 and eIF3 and inhibits general and gene-specific translation in mammalian systems. We further test whether 5MP1 is a mimic or competitor of the GEF catalytic subunit eIF2Bε or eIF5, using yeast as a model. Our results suggest that 5MP1 interacts with yeast eIF2 and promotes TC formation, but inhibits TC binding to the ribosome. Moreover, 5MP1 is not a GEF but a weak GDI for yeast eIF2. We propose that 5MP1 is a partial mimic and competitor of eIF5, interfering with the key steps by which eIF5 regulates eIF2 function.


M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells.

  • Yasushi Hara‎ et al.
  • PloS one‎
  • 2017‎

Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to activate Akt and also demonstrates that M-COPA is efficacious for growth suppression of neoplastic mast cells.


Urinary phosphate-containing nanoparticle contributes to inflammation and kidney injury in a salt-sensitive hypertension rat model.

  • Qin Wang‎ et al.
  • Communications biology‎
  • 2020‎

Although disturbed phosphate metabolism frequently accompanies chronic kidney disease (CKD), its causal role in CKD progression remains unclear. It is also not fully understood how excess salt induces organ damage. We here show that urinary phosphate-containing nanoparticles promote kidney injury in salt-sensitive hypertension. In Dahl salt-sensitive rats, salt loading resulted in a significant increase in urinary phosphate excretion without altering serum phosphate levels. An intestinal phosphate binder sucroferric oxyhydroxide attenuated renal inflammation and proteinuria in this model, along with the suppression of phosphaturia. Using cultured proximal tubule cells, we confirmed direct pathogenic roles of phosphate-containing nanoparticles in renal tubules. Finally, transcriptome analysis revealed a potential role of complement C1q in renal inflammation associated with altered phosphate metabolism. These data demonstrate that increased phosphate excretion promotes renal inflammation in salt-sensitive hypertension and suggest a role of disturbed phosphate metabolism in the pathophysiology of hypertensive kidney disease and high salt-induced kidney injury.


N822K- or V560G-mutated KIT activation preferentially occurs in lipid rafts of the Golgi apparatus in leukemia cells.

  • Yuuki Obata‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells. Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia (MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL, KIT with mutations (D816V, human; D814Y, mouse) traffics to endolysosomes (EL), where it can then initiate oncogenic signaling. On the other hand, KIT mutants including KITD814Y in GIST accumulate on the Golgi, and from there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML (CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KITD816V in MCL is able to signal on EL.


Lysoglycosphingolipids have the ability to induce cell death through direct PI3K inhibition.

  • Ryosuke Watanabe‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

Sphingolipidoses are inherited metabolic disorders associated with glycosphingolipids accumulation, neurodegeneration, and neuroinflammation leading to severe neurological symptoms. Lysoglycosphingolipids (lysoGSLs), also known to accumulate in the tissues of sphingolipidosis patients, exhibit cytotoxicity. LysoGSLs are the possible pathogenic cause, but the mechanisms are still unknown in detail. Here, we first show that lysoGSLs are potential inhibitors of phosphoinositide 3-kinase (PI3K) to reduce cell survival signaling. We found that phosphorylated Akt was commonly reduced in fibroblasts from patients with sphingolipidoses, including GM1/GM2 gangliosidoses and Gaucher's disease, suggesting the contribution of lysoGSLs to the pathogenesis. LysoGSLs caused cell death and decreased the level of phosphorylated Akt as in the patient fibroblasts. Extracellularly administered lysoGM1 permeated the cell membrane to diffusely distribute in the cytoplasm. LysoGM1 and lysoGM2 also inhibited the production of phosphatidylinositol-(3,4,5)-triphosphate and the translocation of Akt from the cytoplasm to the plasma membrane. We also predicted that lysoGSLs could directly bind to the catalytic domain of PI3K by in silico docking study, suggesting that lysoGSLs could inhibit PI3K by directly interacting with PI3K in the cytoplasm. Furthermore, we revealed that the increment of lysoGSLs amounts in the brain of sphingolipidosis model mice correlated with the neurodegenerative progression. Our findings suggest that the down-regulation of PI3K/Akt signaling by direct interaction of lysoGSLs with PI3K in the brains is a neurodegenerative mechanism in sphingolipidoses. Moreover, we could propose the intracellular PI3K activation or inhibition of lysoGSLs biosynthesis as novel therapeutic approaches for sphingolipidoses because lysoGSLs should be cell death mediators by directly inhibiting PI3K, especially in neurons.


A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS).

  • Yohsuke Harada‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

The CD28 family molecules, CD28, and inducible costimulator (ICOS) all provide positive costimulatory signals. However, unlike CD28, ICOS does not costimulate IL-2 secretion. The YMNM motif that exists in the CD28 cytoplasmic domain is a known binding site for phosphatidylinositol 3-kinase (PI3-K) and Grb2. ICOS possesses the YMFM motif in the corresponding region of CD28 that binds PI3-K but not Grb2. We postulated that the reason that ICOS does not have the ability to induce IL-2 production is because it fails to recruit Grb2. To verify this hypothesis, we generated a mutant ICOS gene that contains the CD28 YMNM motif and measured IL-2 promoter activation after ICOS ligation. The results indicated that ICOS became competent to activate the IL-2 promoter by this single alteration. Further analysis demonstrated that Grb2 binding to ICOS was sufficient to activate the NFAT/AP-1 site in the IL-2 promoter and that the cytoplasmic domain of CD28 outside of the YMNM motif is required for activation of the CD28RE/AP-1 and NF-kappaB sites. Together, these observations lead us to believe that the difference of a single amino acid, which affects Grb2 binding ability, may define a functional difference between the CD28- and ICOS-mediated costimulatory signals.


A role of suppressor of cytokine signaling 3 (SOCS3/CIS3/SSI3) in CD28-mediated interleukin 2 production.

  • Akira Matsumoto‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Suppressor of cytokine signaling (SOCS)3 has been characterized as a negative feedback regulator in cytokine-mediated Janus kinase signal transducer and activator of transcription signaling. However, this study shows that T cells from transgenic mice expressing SOCS3 exhibit a significant reduction in interleukin (IL)-2 production induced by T cell receptor cross-linking when T cells are costimulated with CD28. Decreased protein expression in SOCS3(+/-) mice enhanced CD28-mediated IL-2 production, clearly indicating the correlation between expression level of SOCS3 and IL-2 production ability. The SOCS3 protein interacted with phosphorylated CD28 through its SH2 domain but not the kinase inhibitory region. In addition, a point mutation in the SOCS3 SH2 domain attenuated the inhibition of CD28 function in IL-2 promoter activation. Committed T helper (Th)2 cells exclusively expressed SOCS3 and production of Th2 cytokines, such as IL-4 and IL-5, was much less dependent on CD28 costimulation compared with interferon gamma and IL-2 production in Th1 cells. Consistent with this notion, the expression level of SOCS3 in early T cell activation influenced the ability of IL-2 production induced by CD28 costimulation. Therefore, the SOCS3 may play an alternative role in prohibiting excessive progression of CD28-mediated IL-2 production.


Polymorphisms in CPT1B and CPT2 have no significant effect on plasma carnitine levels in Japanese cancer patients.

  • Asahi Hishida‎ et al.
  • Nagoya journal of medical science‎
  • 2019‎

Treatment of cancer patients undergoing chemotherapy with L-carnitine (LC) supplementation is becoming increasingly popular in the clinic. The present study aimed to examine the possible effects of polymorphisms in CPT1B and CPT2 (CPT1B G320D, S427C, c.282-18 C>T, and p.E531K, and CPT2 V368I) on the plasma concentration of carnitine in humans. The subjects were the 218 participants of the Iga Cohort Study. Differences in plasma-free carnitine levels by genotype were examined. Genotyping was conducted by polymerase chain reaction with confronting two-pair primers (PCR-CTPP). The plasma carnitine levels were significantly higher in males (P<0.001; Student's t-test), and there was no significant difference in plasma carnitine levels between the age groups (P=0.202; ANOVA). One-way ANOVA revealed the plasma levels of carnitine were neither significantly different by CPT1B G320D, S427C, c.282-18 C>T, or p.E531K, nor by CPT2 V368I genotypes (P=0.133, P=0.538, P=0.636, P=0.509, and P=0.398, respectively). When analysis of covariance (ANCOVA) adjusted for age and sex was applied, the plasma levels of carnitine were not statistically significantly different according to these genotypes (P=0.299, P=0.715, P=0.980, P=0.851, and P=0.674, respectively). The present study did not identify any statistically significant differences in plasma carnitine levels between subjects with different CPT1 and CPT2 genotypes, suggesting that there may be no need to tailor treatments to patients' genotypes when determining the dose/amount of LC to be administered to cancer patients undergoing palliative care.


Structural and functional properties of Grb2 SH2 dimer in CD28 binding.

  • Yuhi Hosoe‎ et al.
  • Biophysics and physicobiology‎
  • 2019‎

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123-152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix "swapping". In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.


Development of a novel RANKL-based peptide, microglial healing peptide1-AcN (MHP1-AcN), for treatment of ischemic stroke.

  • Munehisa Shimamura‎ et al.
  • Scientific reports‎
  • 2018‎

Although the regulation of post-ischemic inflammation is an important strategy to treat ischemic stroke, all clinical trials have failed to show its efficacy. To solve the problem, we previously developed a novel partial peptide of RANKL, microglial healing peptide 1 (MHP1), which could reduce ischemic injury by inhibiting Toll-like receptor (TLR) induced inflammation. However, optimization of the peptide was necessary to increase the stability and efficacies for clinical use. According to information gathered through HPLC/MS in serum, we have newly designed a series of modified MHP1 peptides and have found that N-terminal acetylation and C-terminal amidation in MHP1 (MHP1-AcN), can strengthen its anti-inflammatory effects and increase its stability with anti-osteoclastogenic effects. Anti-TLR activity was reported to be reduced in MHP1 when incubated at 37 °C for 24 hrs, but MHP1-AcN could keep the activity under the same condition. The therapeutic effect of MHP1-AcN was observed in transient ischemic stroke model at lower dose than MHP1. Importantly, MHP1-AcN did not affect thrombolytic effects of tissue plasminogen activator (tPA) and inhibited tPA-induced hemorrhagic transformation. These findings indicated that MHP1-AcN was stable and effective anti-TLR signal peptide and could be a promising agent for treating stroke patients receiving tPA and endovascular therapy.


Glyoxalase 1 gene is highly expressed in basal-like human breast cancers and contributes to survival of ALDH1-positive breast cancer stem cells.

  • Shoma Tamori‎ et al.
  • Oncotarget‎
  • 2018‎

Glyoxalase 1 (GLO1) is a ubiquitous enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis that induces apoptosis. In this study, we found that GLO1 gene expression correlates with neoplasm histologic grade (χ 2 test, p = 0.002) and is elevated in human basal-like breast cancer tissues. Approximately 90% of basal-like cancers were grade 3 tumors highly expressing both GLO1 and the cancer stem cell marker ALDH1A3. ALDH1high cells derived from the MDA-MB 157 and MDA-MB 468 human basal-like breast cancer cell lines showed elevated GLO1 activity. GLO1 inhibition using TLSC702 suppressed ALDH1high cell viability as well as the formation of tumor-spheres by ALDH1high cells. GLO1 knockdown using specific siRNAs also suppressed ALDH1high cell viability, and both TLSC702 and GLO1 siRNA induced apoptosis in ALDH1high cells. These results suggest GLO1 is essential for the survival of ALDH1-positive breast cancer stem cells. We therefore conclude that GLO1 is a potential therapeutic target for treatment of basal-like breast cancers.


Comparison of the effect of non-esterified and esterified astaxanthins on endurance performance in mice.

  • Wataru Aoi‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2018‎

Astaxanthin, a natural antioxidant, exists in non-esterified and esterified forms. Although it is known that astaxanthin can improve exercise endurance and cause metabolic improvement in skeletal muscle, the effects of the two different forms are unclear. We investigated the effects of the different forms of astaxanthin on endurance in mice. Eight-week-old ICR mice were divided into four groups: control; astaxanthin extracted from Haematococcus pluvialis in an esterified form; astaxanthin extracted from Phaffia rhodozyma in a non-esterified form; and astaxanthin synthesized chemically in a non-esterified form. After 5 weeks of treatment, each group was divided into sedentary and exercise groups. In the group fed astaxanthin from Haematococcus, the running time to exhaustion was longest, and the plasma and tissue concentrations of astaxanthin were significantly higher than those in the other groups. Astaxanthin from Haematococcus increased 5'-adenosine monophosphate-activated protein kinase levels in the skeletal muscle. Although the mice in the Haematococcus group ran for longer, hexanoyl lysine adduct levels in the skeletal muscle mitochondria were similar in the control and Haematococcus groups. Our results suggested that esterified astaxanthin promoted energy production and protected tissues from oxidative damage during exercise owing to its favorable absorption properties, leading to a longer running time.


First isolation of Trichophyton bullosum from a horse with dermatophytosis in Japan.

  • Ryosuke Watanabe‎ et al.
  • Medical mycology case reports‎
  • 2021‎

Trichophyton bullosum is a zoophilic dermatophyte that has been rarely isolated from horses and humans in Africa and Europe. This is the first reported isolation of T. bullosum from a horse with dermatophytosis in Japan. The isolate from a skin lesion formed a cream-colored and waxy colony that was slightly elevated in the center. Sequencing of the internal transcribe spacer region of the isolate revealed that it was 100% identical to that of T. bullosum.


Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

  • Hideki Makinoshima‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.


Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers.

  • Junko Ohtsuka‎ et al.
  • Scientific reports‎
  • 2018‎

p53 mutations are frequently detected in malignant gastric cancers. However, the molecular mechanisms by which loss of p53 function promotes gastric cancer are not clear. We utilized Gan mice (K19-Wnt1/C2mE), which have functional p53 and develop intestinal-type gastric tumors, to investigate the role of p53 in gastric cancer progression by knocking out p53. We found that gastric epithelial cells acquire tumorigenicity in the subcutis of C57BL/6 mice as a result of Wnt activation, COX-2 activation and p53 deficiency. With repeated allograft transfers, these gastric epithelial cells gradually acquired the properties of malignant gastric cancer. Loss of p53 conferred cell stemness and induced epithelial to mesenchymal transition (EMT) in gastric epithelial cells, and these properties were further enhanced by the in vivo microenvironment, ultimately leading to gastric cancer formation and metastasis. We also found that the in vivo microenvironment enhanced activation of the COX-2 pathway, which further contributed to cancer progression. With this system, we have succeeded in recapitulating the development of malignant gastric cancer from gastric epithelial cells in a normal immune environment.


Splicing- and demethylase-independent functions of LSD1 in zebrafish primitive hematopoiesis.

  • Junya Tamaoki‎ et al.
  • Scientific reports‎
  • 2020‎

LSD1/KDM1A is a widely conserved lysine-specific demethylase that removes methyl groups from methylated proteins, mainly histone H3. We previously isolated the zebrafish LSD1 gene and demonstrated that it is required for primitive hematopoiesis. Recently, a neuron-specific splicing variant of LSD1 was found in mammals and its specific functions and substrate specificities were reported. To our surprise, zebrafish LSD1 cDNA, which we previously analyzed, was corresponded to the neuron-specific variant in mammals. In this study, we investigated the structures and expression of LSD1 splicing variants in zebrafish and found all 4 types of LSD1 isoforms: LSD1, LSD1+2al, LSD1+8al and LSD1+2al8al. Interestingly, LSD1+8al/LSD1+2al8al, which correspond to mammalian neuron-specific variants, expressed ubiquitously in zebrafish. We also performed phenotypic rescue experiments of a zebrafish LSD1 mutant (kdm1ait627) using human and zebrafish LSD1 variants to identify which variant is involved in primitive hematopoiesis. Unexpectedly, the overexpression of all types of human and zebrafish variants was able to rescue the hematopoietic phenotypes in LSD1 mutants. Furthermore, enzymatic-deficient LSD1K661A (human) and K638A (zebrafish) were also able to rescue the mutant phenotypes. These results suggest that the LSD1 functions in zebrafish primitive hematopoiesis are free from any splicing-dependent regulation or demethylation reaction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: