Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Acculturation and Plasma Fatty Acid Concentrations in Hispanic and Chinese-American Adults: The Multi-Ethnic Study of Atherosclerosis.

  • Cassandra S Diep‎ et al.
  • PloS one‎
  • 2016‎

Acculturation to the U.S. is associated with increased risk of cardiovascular disease, but the etiologic pathways are not fully understood. Plasma fatty acid levels exhibit ethnic differences and are emerging as biomarkers and predictors of cardiovascular disease risk. Thus, plasma fatty acids may represent one pathway underlying the association between acculturation and cardiovascular disease. We investigated the cross-sectional relationship between acculturation and plasma phospholipid fatty acids in a diverse sample of Hispanic- and Chinese-American adults.


Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry.

  • Jennifer A Nettleton‎ et al.
  • Human molecular genetics‎
  • 2015‎

Obesity is highly heritable. Genetic variants showing robust associations with obesity traits have been identified through genome-wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphisms were genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjusted WHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.


Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

  • Tuomas O Kilpeläinen‎ et al.
  • Nature communications‎
  • 2019‎

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.


Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations.

  • Yao Hu‎ et al.
  • Journal of lipid research‎
  • 2017‎

MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.


Higher Epoxyeicosatrienoic Acids in Cardiomyocytes-Specific CYP2J2 Transgenic Mice Are Associated with Improved Myocardial Remodeling.

  • Theresa Aliwarga‎ et al.
  • Biomedicines‎
  • 2020‎

Elevated cis-epoxyeicosatrienoic acids (EETs) are known to be cardioprotective during ischemia-reperfusion injury in cardiomyocyte-specific overexpressing cytochrome P450 2J2 (CYP2J2) transgenic (Tr) mice. Using the same Tr mice, we measured changes in cardiac and erythrocyte membranes EETs following myocardial infarction (MI) to determine if they can serve as reporters for cardiac events. Cardiac function was also assessed in Tr vs. wild-type (WT) mice in correlation with EET changes two weeks following MI. Tr mice (N = 25, 16 female, nine male) had significantly higher cardiac cis- and trans-EETs compared to their WT counterparts (N=25, 18 female, seven male). Total cardiac cis-EETs in Tr mice were positively correlated with total cis-EETs in erythrocyte membrane, but there was no correlation with trans-EETs or in WT mice. Following MI, cis- and trans-EETs were elevated in the erythrocyte membrane and cardiac tissue in Tr mice, accounting for the improved cardiac outcomes observed. Tr mice showed significantly better myocardial remodeling following MI, evidenced by higher % fractional shortening, smaller infarct size, lower reactive oxygen species (ROS) formation, reduced fibrosis and apoptosis, and lower pulmonary edema. A positive correlation between total cardiac cis-EETs and total erythrocyte membrane cis-EETs in a Tr mouse model suggests that erythrocyte cis-EETs may be used as predictive markers for cardiac events. All cis-EET regioisomers displayed similar trends following acute MI; however, the magnitude of change for each regioisomer was markedly different, warranting measurement of each individually.


Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.

  • Pradeep Natarajan‎ et al.
  • Nature communications‎
  • 2021‎

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10-72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10-4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10-5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.


Plasma Trimethylamine-N-Oxide and Incident Ischemic Stroke: The Cardiovascular Health Study and the Multi-Ethnic Study of Atherosclerosis.

  • Rozenn N Lemaitre‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background The association of circulating trimethylamine-N-oxide (TMAO) with stroke has received limited attention. To address this gap, we examined the associations of serial measures of plasma TMAO with incident ischemic stroke. Methods and Results We used a prospective cohort design with data pooled from 2 cohorts. The settings were the CHS (Cardiovascular Health Study), a cohort of older adults, and the MESA (Multi-Ethnic Study of Atherosclerosis), both in the United States. We measured plasma concentrations of TMAO at baseline and again during the follow-up using high-performance liquid chromatography and mass spectrometry. We assessed the association of plasma TMAO with incident ischemic stroke using proportional hazards regression adjusted for risk factors. The combined cohorts included 11 785 participants without a history of stroke, on average 73 (CHS) and 62 (MESA) years old at baseline, including 60% (CHS) and 53% (MESA) women. We identified 1031 total incident ischemic strokes during a median 15-year follow-up in the combined cohorts. In multivariable analyses, TMAO was significantly associated with incident ischemic stroke risk (hazard ratios comparing a doubling of TMAO: 1.11 [1.03-1.18], P=0.004). The association was linear over the range of TMAO concentrations and appeared restricted to those without diagnosed coronary heart disease. An association with hemorrhagic stroke was not found. Conclusions Plasma TMAO levels are associated with incident ischemic stroke in a diverse population. Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00005133.


Whole-Genome Sequencing Analysis of Human Metabolome in Multi-Ethnic Populations.

  • Elena V Feofanova‎ et al.
  • Nature communications‎
  • 2023‎

Circulating metabolite levels may reflect the state of the human organism in health and disease, however, the genetic architecture of metabolites is not fully understood. We have performed a whole-genome sequencing association analysis of both common and rare variants in up to 11,840 multi-ethnic participants from five studies with up to 1666 circulating metabolites. We have discovered 1985 novel variant-metabolite associations, and validated 761 locus-metabolite associations reported previously. Seventy-nine novel variant-metabolite associations have been replicated, including three genetic loci located on the X chromosome that have demonstrated its involvement in metabolic regulation. Gene-based analysis have provided further support for seven metabolite-replicated loci pairs and their biologically plausible genes. Among those novel replicated variant-metabolite pairs, follow-up analyses have revealed that 26 metabolites have colocalized with 21 tissues, seven metabolite-disease outcome associations have been putatively causal, and 7 metabolites might be regulated by plasma protein levels. Our results have depicted the genetic contribution to circulating metabolite levels, providing additional insights into understanding human disease.


Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.

  • Rozenn N Lemaitre‎ et al.
  • PLoS genetics‎
  • 2011‎

Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3 x 10⁻⁶⁴) and lower levels of eicosapentaenoic acid (EPA, p = 5 x 10⁻⁵⁸) and docosapentaenoic acid (DPA, p = 4 x 10⁻¹⁵⁴). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2 x 10⁻¹²) and DPA (p = 1 x 10⁻⁴³) and lower docosahexaenoic acid (DHA, p = 1 x 10⁻¹⁵). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1 x 10⁻⁸). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.


Plasma Fatty Acid binding protein 4 and risk of sudden cardiac death in older adults.

  • Luc Djoussé‎ et al.
  • Cardiology research and practice‎
  • 2013‎

Although fatty acid binding protein 4 (FABP4) may increase risk of diabetes and exert negative cardiac inotropy, it is unknown whether plasma concentrations of FABP4 are associated with incidence of sudden cardiac death (SCD). We prospectively analyzed data on 4,560 participants of the Cardiovascular Health Study. FABP4 was measured at baseline using ELISA, and SCD events were adjudicated through review of medical records. We used Cox proportional hazards to estimate effect measures. During a median followup of 11.8 years, 146 SCD cases occurred. In a multivariable model adjusting for demographic, lifestyle, and metabolic factors, relative risk of SCD associated with each higher standard deviation (SD) of plasma FABP4 was 1.15 (95% CI: 0.95-1.38), P = 0.15. In a secondary analysis stratified by prevalent diabetes status, FABP4 was associated with higher risk of SCD in nondiabetic participants, (RR per SD higher FABP4: 1.33 (95% CI: 1.07-1.65), P = 0.009) but not in diabetic participants (RR per SD higher FABP4: 0.88 (95% CI: 0.62-1.27), P = 0.50), P for diabetes-FABP4 interaction 0.049. In summary, a single measure of plasma FABP4 obtained later in life was not associated with the risk of SCD in older adults overall. Confirmation of our post-hoc results in nondiabetic people in other studies is warranted.


Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.

  • Jennifer A Nettleton‎ et al.
  • Diabetes care‎
  • 2010‎

Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin.


Potential Interplay between Dietary Saturated Fats and Genetic Variants of the NLRP3 Inflammasome to Modulate Insulin Resistance and Diabetes Risk: Insights from a Meta-Analysis of 19 005 Individuals.

  • Aoife M Murphy‎ et al.
  • Molecular nutrition & food research‎
  • 2019‎

Insulin resistance (IR) and inflammation are hallmarks of type 2 diabetes (T2D). The nod-like receptor pyrin domain containing-3 (NLRP3) inflammasome is a metabolic sensor activated by saturated fatty acids (SFA) initiating IL-1β inflammation and IR. Interactions between SFA intake and NLRP3-related genetic variants may alter T2D risk factors.


Impact of Amerind ancestry and FADS genetic variation on omega-3 deficiency and cardiometabolic traits in Hispanic populations.

  • Chaojie Yang‎ et al.
  • Communications biology‎
  • 2021‎

Long chain polyunsaturated fatty acids (LC-PUFAs) have critical signaling roles that regulate dyslipidemia and inflammation. Genetic variation in the FADS gene cluster accounts for a large portion of interindividual differences in circulating and tissue levels of LC-PUFAs, with the genotypes most strongly predictive of low LC-PUFA levels at strikingly higher frequencies in Amerind ancestry populations. In this study, we examined relationships between genetic ancestry and FADS variation in 1102 Hispanic American participants from the Multi-Ethnic Study of Atherosclerosis. We demonstrate strong negative associations between Amerind genetic ancestry and LC-PUFA levels. The FADS rs174537 single nucleotide polymorphism (SNP) accounted for much of the AI ancestry effect on LC-PUFAs, especially for low levels of n-3 LC-PUFAs. Rs174537 was also strongly associated with several metabolic, inflammatory and anthropomorphic traits including circulating triglycerides (TGs) and E-selectin in MESA Hispanics. Our study demonstrates that Amerind ancestry provides a useful and readily available tool to identify individuals most likely to have FADS-related n-3 LC-PUFA deficiencies and associated cardiovascular risk.


Investigating associations of omega-3 fatty acids, lung function decline, and airway obstruction.

  • Bonnie K Patchen‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have anti-inflammatory properties and may benefit lung health.


Plasma ceramides containing saturated fatty acids are associated with risk of type 2 diabetes.

  • Amanda M Fretts‎ et al.
  • Journal of lipid research‎
  • 2021‎

Recent studies suggest that the type of saturated fatty acid bound to sphingolipids influences the biological activity of those sphingolipids. However, it is unknown whether associations of sphingolipids with diabetes may differ by the identity of bound lipid species. Here, we investigated associations of 15 ceramide (Cer) and SM species (i.e., all sphingolipids, measured with coefficient of variation less than 20%) with incident type 2 diabetes in the Cardiovascular Health Study (n = 3,645), a large cohort study of cardiovascular disease among elderly adults who were followed from 1989 to 2015. Diabetes incidence was defined as fasting glucose ≥126 mg/dl or nonfasting glucose ≥200 mg/dl; reported use of insulin or oral hypoglycemic medication; or documentation of diabetes diagnosis through the Centers for Medicare and Medicaid Services records. Associations of each sphingolipid with incident diabetes were assessed using a Cox proportional hazards regression model. We found that higher circulating levels of Cer with acylated palmitic acid (Cer-16), stearic acid containing Cer (Cer-18), arachidic acid containing Cer (Cer-20), and behenic acid containing Cer (Cer-22) were each associated with a higher risk of diabetes. The hazard ratios for incident diabetes per 1 SD higher log levels of each Cer species were as follows: 1.21 (95% CI: 1.09-1.34) for Cer-16, 1.23 (95% CI: 1.10-1.37) for Cer-18, 1.14 (95% CI: 1.02-1.26) for Cer-20, and 1.18 (95% CI: 1.06-1.32) for Cer-22. In conclusion, higher levels of Cer-16, Cer-18, Cer-20, and Cer-22 were associated with a higher risk of diabetes.


Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies.

  • Fumiaki Imamura‎ et al.
  • PLoS medicine‎
  • 2018‎

We aimed to investigate prospective associations of circulating or adipose tissue odd-chain fatty acids 15:0 and 17:0 and trans-palmitoleic acid, t16:1n-7, as potential biomarkers of dairy fat intake, with incident type 2 diabetes (T2D).


Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways.

  • William J Young‎ et al.
  • Nature communications‎
  • 2022‎

The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.


Gain-of-function lipoprotein lipase variant rs13702 modulates lipid traits through disruption of a microRNA-410 seed site.

  • Kris Richardson‎ et al.
  • American journal of human genetics‎
  • 2013‎

Genome-wide association studies (GWAS) have identified hundreds of genetic variants that are associated with lipid phenotypes. However, data supporting a functional role for these variants in the context of lipid metabolism are scarce. We investigated the association of the lipoprotein lipase (LPL) variant rs13702 with plasma lipids and explored its potential for functionality. The rs13702 minor allele had been predicted to disrupt a microRNA (miR) recognition element (MRE) seed site (MRESS) for the human microRNA-410 (miR-410). Furthermore, rs13702 is in linkage disequilibrium (LD) with several SNPs identified by GWAS. We performed a meta-analysis across ten cohorts of participants that showed a statistically significant association of rs13702 with triacylglycerols (TAG) (p = 3.18 × 10(-42)) and high-density lipoprotein cholesterol (HDL-C) (p = 1.35 × 10(-32)) with each copy of the minor allele associated with 0.060 mmol/l lower TAG and 0.041 mmol/l higher HDL-C. Our data showed that an LPL 3' UTR luciferase reporter carrying the rs13702 major T allele was reduced by 40% in response to a miR-410 mimic. We also evaluated the interaction between intake of dietary fatty acids and rs13702. Meta-analysis demonstrated a significant interaction between rs13702 and dietary polyunsaturated fatty acid (PUFA) with respect to TAG concentrations (p = 0.00153), with the magnitude of the inverse association between dietary PUFA intake and TAG concentration showing -0.007 mmol/l greater reduction. Our results suggest that rs13702 induces the allele-specific regulation of LPL by miR-410 in humans. This work provides biological and potential clinical relevance for previously reported GWAS variants associated with plasma lipid phenotypes.


Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake.

  • Toshiko Tanaka‎ et al.
  • The American journal of clinical nutrition‎
  • 2013‎

Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants.


Genetic loci associated with circulating levels of very long-chain saturated fatty acids.

  • Rozenn N Lemaitre‎ et al.
  • Journal of lipid research‎
  • 2015‎

Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10(-13)). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10(-40)) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10(-26)) and lignoceric acid (P = 3.20 × 10(-21)). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: