Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Differential distribution of major brain gangliosides in the adult mouse central nervous system.

  • Katarina Vajn‎ et al.
  • PloS one‎
  • 2013‎

Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies.


Sialidase, chondroitinase ABC, and combination therapy after spinal cord contusion injury.

  • Andrea Mountney‎ et al.
  • Journal of neurotrauma‎
  • 2013‎

Axon regeneration in the central nervous system is severely hampered, limiting functional recovery. This is in part because of endogenous axon regeneration inhibitors that accumulate at the injury site. Therapeutic targeting of these inhibitors and their receptors may facilitate axon outgrowth and enhance recovery. A rat model of spinal cord contusion injury was used to test the effects of two bacterial enzyme therapies that target independent axon regeneration inhibitors, sialidase (Vibrio cholerae) and chondroitinase ABC (ChABC, Proteus vulgaris). The two enzymes, individually and in combination, were infused for 2 weeks via implanted osmotic pumps to the site of a moderate thoracic spinal cord contusion injury. Sialidase was completely stable, whereas ChABC retained>30% of its activity in vivo over the 2 week infusion period. Immunohistochemistry revealed that infused sialidase acted robustly throughout the spinal cord gray and white matter, whereas ChABC activity was more intense superficially. Sialidase treatment alone resulted in improved behavioral and anatomical outcomes. Rats treated exclusively with sialidase showed significantly increased hindlimb motor function, evidenced by higher Basso Beattie and Bresnahan (BBB) and BBB subscores, and fewer stepping errors on a horizontal ladder. Sialidase-treated rats also had increased serotonergic axons caudal to the injury. ChABC treatment, in contrast, did not enhance functional recovery or alter axon numbers after moderate spinal cord contusion injury, and dampened the response of sialidase in the dual enzyme treatment group. We conclude that sialidase infusion enhanced recovery from spinal cord contusion injury, and that combining sialidase with ChABC failed to improve outcomes.


Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice.

  • Baohan Pan‎ et al.
  • Experimental neurology‎
  • 2005‎

Complementary interacting molecules on myelin and axons are required for long-term axon-myelin stability. Their disruption results in axon degeneration, contributing to the pathogenesis of demyelinating diseases. Myelin-associated glycoprotein (MAG), a minor constituent of central and peripheral nervous system myelin, is a member of the Siglec family of sialic acid-binding lectins and binds to gangliosides GD1a and GT1b, prominent molecules on the axon surface. Mice lacking the ganglioside biosynthetic gene Galgt1 fail to express complex gangliosides, including GD1a and GT1b. In the current studies, CNS and PNS histopathology and behavior of Mag-null, Galgt1-null, and double-null mice were compared on the same mouse strain background. When back-crossed to >99% C57BL/6 strain purity, Mag-null mice demonstrated marked CNS, as well as PNS, axon degeneration, in contrast to prior findings using mice of mixed strain background. On the same background, Mag- and Galgt1-null mice exhibited quantitatively and qualitatively similar CNS and PNS axon degeneration and nearly identical decreases in axon diameter and neurofilament spacing. Double-null mice had qualitatively similar changes. Consistent with these findings, Mag- and Galgt1-null mice had similar motor behavioral deficits, with double-null mice only modestly more impaired. Despite their motor deficits, Mag- and Galgt1-null mice demonstrated hyperactivity, with spontaneous locomotor activity significantly above that of wild type mice. These data demonstrate that MAG and complex gangliosides contribute to axon stability in both the CNS and PNS. Similar neuropathological and behavioral deficits in Galgt1-, Mag-, and double-null mice support the hypothesis that MAG binding to gangliosides contributes to long-term axon-myelin stability.


Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways.

  • Anabel Gonzalez-Gil‎ et al.
  • Glycobiology‎
  • 2018‎

Human siglecs are a family of 14 sialic acid-binding proteins, most of which are expressed on subsets of immune cells where they regulate immune responses. Siglec-8 is expressed selectively on human allergic inflammatory cells-primarily eosinophils and mast cells-where engagement causes eosinophil apoptosis and inhibits mast cell mediator release. Evidence supports a model in which human eosinophils and mast cells bind to Siglec-8 sialoglycan ligands on inflammatory target tissues to resolve allergic inflammation and limit tissue damage. To identify Siglec-8-binding sialoglycans from human airways, proteins extracted from postmortem human trachea were resolved by size-exclusion chromatography and composite agarose-acrylamide gel electrophoresis, blotted and probed by Siglec-8-Fc blot overlay. Three size classes of Siglec-8 ligands were identified: 250 kDa, 600 kDa and 1 MDa, each of which was purified by affinity chromatography using a recombinant pentameric form of Siglec-8. Proteomic mass spectrometry identified all size classes as the proteoglycan aggrecan, a finding validated by immunoblotting. Glycan array studies demonstrated Siglec-8 binding to synthetic glycans with a terminal Neu5Acα2-3(6-sulfo)-Gal determinant, a quantitatively minor terminus on keratan sulfate (KS) chains of aggrecan. Treating human tracheal extracts with sialidase or keratanase eliminated Siglec-8 binding, indicating sialylated KS chains as Siglec-8-binding determinants. Treating human tracheal histological sections with keratanase also completely eliminated the binding of Siglec-8-Fc. Finally, Siglec-8 ligand purified from human trachea extracts induced increased apoptosis of freshly isolated human eosinophils in vitro. We conclude that sialylated KS proteoglycans are endogenous human airway ligands that bind Siglec-8 and may regulate allergic inflammation.


β-Glucosylceramide From Allergic Mothers Enhances Offspring Responsiveness to Allergen.

  • Matthew T Walker‎ et al.
  • Frontiers in allergy‎
  • 2021‎

In animals and humans, offspring of allergic mothers have increased responsiveness to allergen and the allergen-specificity of the offspring can be different than that of the mother. In our preclinical models, the mother's allergic responses influence development of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A major question is the identity of maternal factors of allergic mothers that alter offspring development of responsiveness to allergen. Lipids are altered during allergic responses and lipids are transported to the fetus for growth and formation of fetal membranes. We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are transported to the fetus and regulate fetal immune development. We demonstrate in this report that there was a significant 2-fold increase in β-glucosylceramides (βGlcCer) in allergic mothers, the fetal liver and her offspring. The βGlcCer were transported from mother's plasma, across the placenta, to the fetus and in breastmilk to the offspring. Administration of βGlcCer to non-allergic mothers was sufficient for offspring responses to allergen. Importantly, maternal administration of a clinically relevant pharmacological inhibitor of βGlcCer synthase returned βGlcCer to normal levels in the allergic mothers and her offspring and blocked the offspring increase in dendritic cell subsets and offspring allergen responsiveness. In summary, allergic mothers had increased βGlcCer that was transported to offspring and mediated increases in offspring DCs and responsiveness to allergen. These data have a significant impact on our understanding of mechanisms for development of allergies in offspring of allergic mothers and have the potential to lead to novel interventions that significantly impact risk for allergic disease early in life.


Agenesis of the corpus callosum in Nogo receptor deficient mice.

  • Seung-Wan Yoo‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

The corpus callosum (CC) is the largest fiber tract in the mammalian brain, linking the bilateral cerebral hemispheres. CC development depends on the proper balance of axon growth cone attractive and repellent cues leading axons to the midline and then directing them to the contralateral hemisphere. Imbalance of these cues results in CC agenesis or dysgenesis. Nogo receptors (NgR1, NgR2, and NgR3) are growth cone directive molecules known for inhibiting axon regeneration after injury. We report that mice lacking Nogo receptors (NgR123-null mice) display complete CC agenesis due to axon misdirection evidenced by ectopic axons including cortical Probst bundles. Because glia and glial-derived growth cone repellent factors (especially the diffusible factor Slit2) are required for CC development, their distribution was studied. Compared with wild-type mice, NgR123-null mice had a sharp increase in the glial marker glial fibrillary acidic protein (GFAP) and in Slit2 at the glial wedge and indusium griseum, midline structures required for CC formation. NgR123-null mice displayed reduced motor coordination and hyperactivity. These data are consistent with the hypotheses that Nogo receptors are membrane-bound growth cone repellent factors required for migration of axons across the midline at the CC, and that their absence results directly or indirectly in midline gliosis, increased Slit2, and complete CC agenesis. J. Comp. Neurol. 525:291-301, 2017. © 2016 Wiley Periodicals, Inc.


Myelin-associated glycoprotein protects neurons from excitotoxicity.

  • Pablo H H Lopez‎ et al.
  • Journal of neurochemistry‎
  • 2011‎

In addition to supporting rapid nerve conduction, myelination nurtures and stabilizes axons and protects them from acute toxic insults. One myelin molecule that protects and sustains axons is myelin-associated glycoprotein (MAG). MAG is expressed on the innermost wrap of myelin, apposed to the axon surface, where it interacts with axonal receptors that reside in lateral membrane domains including gangliosides, the glycosylphosphatidylinositol-anchored Nogo receptors, and β1-integrin. We report here that MAG protection extends beyond the axon to the neurons from which those axons emanate, protecting them from excitotoxicity. Compared to wild type mice, Mag-null mice displayed markedly increased seizure activity in response to intraperitoneal injection of kainic acid, an excitotoxic glutamate receptor agonist. Mag-null mice also had larger lesion volumes in response to intrastriatal injection of the excitotoxin NMDA. Prior injection of a soluble form of MAG partially protected Mag-null mice from NMDA-induced lesions. Hippocampal neurons plated on proteins extracted from wild-type rat or mouse myelin were resistant to kainic acid-induced excitotoxicity, whereas neurons plated on proteins from Mag-null myelin were not. Protection was reversed by anti-MAG antibody and replicated by addition of soluble MAG. MAG-mediated protection from excitotoxicity was dependent on Nogo receptors and β1-integrin. We conclude that MAG engages membrane-domain resident neuronal receptors to protect neurons from excitotoxicity, and that soluble MAG mitigates excitotoxic damage in vivo.


Sialidase enhances recovery from spinal cord contusion injury.

  • Andrea Mountney‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2010‎

Axons fail to regenerate in the injured spinal cord, limiting motor and autonomic recovery and contributing to long-term morbidity. Endogenous inhibitors, including those on residual myelin, contribute to regeneration failure. One inhibitor, myelin-associated glycoprotein (MAG), binds to sialoglycans and other receptors on axons. MAG inhibition of axon outgrowth in some neurons is reversed by treatment with sialidase, an enzyme that hydrolyzes sialic acids and eliminates MAG-sialoglycan binding. We delivered recombinant sialidase intrathecally to rats following a spinal cord contusive injury. Sialidase (or saline solution) was infused to the injury site continuously for 2 wk and then motor behavior, autonomic physiology, and anatomic outcomes were determined 3 wk later. Sialidase treatment significantly enhanced hindlimb motor function, improved bulbospinally mediated autonomic reflexes, and increased axon sprouting. These findings validate sialoglycans as therapeutic targets and sialidase as a candidate therapy for spinal cord injury.


Who's in, who's out? Re-evaluation of lipid raft residents.

  • Kristina Mlinac-Jerkovic‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

Lipid rafts, membrane microdomains enriched with (glyco)sphingolipids, cholesterol, and select proteins, act as cellular signalosomes. Various methods have been used to separate lipid rafts from bulk (non-raft) membranes, but most often, non-ionic detergent Triton X-100 has been used in their isolation. However, Triton X-100 is a reported disruptor of lipid rafts. Histological evidence confirmed raft disruption by Triton X-100, but remarkably revealed raft stability to treatment with a related polyethylene oxide detergent, Brij O20. We report isolation of detergent-resistant membranes from mouse brain using Brij O20 and its use to determine the distribution of major mammalian brain gangliosides, GM1, GD1a, GD1b and GT1b. A different distribution of gangliosides-classically used as a raft marker-was discovered using Brij O20 versus Triton X-100. Immunohistochemistry and imaging mass spectrometry confirm the results. Use of Brij O20 results in a distinctive membrane distribution of gangliosides that is not all lipid raft associated, but depends on the ganglioside structure. This is the first report of a significant proportion of gangliosides outside raft domains. We also determined the distribution of proteins functionally related to neuroplasticity and known to be affected by ganglioside environment, glutamate receptor subunit 2, amyloid precursor protein and neuroplastin and report the lipid raft populations of these proteins in mouse brain tissue. This work will enable more accurate lipid raft analysis with respect to glycosphingolipid and membrane protein composition and lead to improved resolution of lipid-protein interactions within biological membranes.


Myelin-associated glycoprotein activation triggers glutamate uptake by oligodendrocytes in vitro and contributes to ameliorate glutamate-mediated toxicity in vivo.

  • Ana L Vivinetto‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2022‎

Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms.


Gangliosides expressed on breast cancer cells are E-selectin ligands.

  • Venktesh S Shirure‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Cancer cell adhesion to vascular endothelium is a critical process in hematogenous metastasis. We hypothesized that breast cancer cells express ligands that bind under blood flow conditions to E-selectin expressed by endothelial cells. At a hemodynamic wall shear rate, BT-20 and MDA-MB-468 breast cancer cells adhered to cytokine-activated human umbilical cord vein endothelial cells (HUVECs) but not to anti-E-selectin monoclonal antibody treated HUVECs, demonstrating that adhesion was specifically mediated by E-selectin. Characterization of glycans expressed on breast cancer cells by a panel of antibodies revealed that BT-20 cells expressed sialyl Lewis X (sLe(x)) and sialyl Lewis A (sLe(a)) but MDA-MB-468 cells did not, suggesting that the former possess classical glycans involved in E-selectin mediated adhesion while the latter have novel binding epitopes. Protease treatment of the breast cancer cells failed to significantly alter the carbohydrate expression profiles, binding to soluble E-selectin-Ig chimera, or the ability of the cells to tether and roll on E-selectin expressed by HUVECs, indicating that glycosphingolipids are functional E-selectin ligands on these cells. Furthermore, extracted breast cancer cell gangliosides supported binding of E-selectin-Ig chimera and adhesion of E-selectin transfected cells under physiological flow conditions. In summary, our results demonstrate that breast cancer cells express sialylated glycosphingolipids (gangliosides) as E-selectin ligands that may be targeted for prevention of metastasis.


Mast Cell-Specific Expression of Human Siglec-8 in Conditional Knock-in Mice.

  • Yadong Wei‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils-cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI⁺ and c-Kit⁺) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.


Human brain sialoglycan ligand for CD33, a microglial inhibitory Siglec implicated in Alzheimer's disease.

  • Anabel Gonzalez-Gil‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.


Isolation, identification, and characterization of the human airway ligand for the eosinophil and mast cell immunoinhibitory receptor Siglec-8.

  • Anabel Gonzalez-Gil‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2021‎

The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: