Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

  • Yuko Koshimori‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.


A systematic review of the role of the nociceptin receptor system in stress, cognition, and reward: relevance to schizophrenia.

  • Muhammad Saad Khan‎ et al.
  • Translational psychiatry‎
  • 2018‎

Schizophrenia is a debilitating neuropsychiatric illness that is characterized by positive, negative, and cognitive symptoms. Research over the past two decades suggests that the nociceptin receptor system may be involved in domains affected in schizophrenia, based on evidence aligning it with hallmark features of the disorder. First, aberrant glutamatergic and striatal dopaminergic function are associated with psychotic symptoms, and the nociceptin receptor system has been shown to regulate dopamine and glutamate transmission. Second, stress is a critical risk factor for first break and relapse in schizophrenia, and evidence suggests that the nociceptin receptor system is also directly involved in stress modulation. Third, cognitive deficits are prevalent in schizophrenia, and the nociceptin receptor system has significant impact on learning and working memory. Last, reward processing is disrupted in schizophrenia, and nociceptin signaling has been shown to regulate reward cue salience. These findings provide the foundation for the involvement of the nociceptin receptor system in the pathophysiology of schizophrenia and outline the need for future research into this system.


Evidence That Cannabis Exposure, Abuse, and Dependence Are Related to Glutamate Metabolism and Glial Function in the Anterior Cingulate Cortex: A 1H-Magnetic Resonance Spectroscopy Study.

  • Jeremy J Watts‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

There is evidence that long-term cannabis use is associated with alterations to glutamate neurotransmission and glial function. In this study, 26 long-term cannabis users (males=65.4%) and 47 non-cannabis using healthy controls (males=44.6%) underwent proton magnetic resonance spectroscopy (1H-MRS) of the anterior cingulate cortex (ACC) in order to characterize neurometabolite alterations in cannabis users and to examine associations between neurometabolites, cannabis exposure, and cannabis use behaviors. Myo-inositol, a marker of glial function, and glutamate metabolites did not differ between healthy controls and cannabis users or cannabis users who met criteria for DSM5 cannabis use disorder (n=17). Lower myo-inositol, a putative marker of glial function, was related to greater problematic drug use (F1,22 = 11.95, p=.002; Cohen's f=0.59, large effect; Drug Abuse Screening Test) and severity of cannabis dependence (F1,22 = 6.61, p=.17; Cohen's f=0.44, large effect). Further, past-year cannabis exposure exerted different effects on glutamate and glutamate+glutamine in males and females (glutamate: F1,21 = 6.31, p=.02; glutamate+glutamine: F1,21 = 7.20, p=.014), such that greater past-year cannabis exposure was related to higher concentrations of glutamate metabolites in male cannabis users (glutamate: F1,14 = 25.94, p=.00016; Cohen's f=1.32, large effect; glutamate+glutamine: F1,14 = 23.24, p=.00027, Cohen's f=1.24, large effect) but not in female cannabis users (glutamate: F1,6 = 1.37, p=0.78; glutamate+glutamine: F1,6 = 0.001, p=.97). The present results extend existing evidence of altered glial function and glutamate metabolism with cannabis use by providing evidence linking problematic drug use behaviors with glial function as measured with myo-inositol and recent chronic cannabis exposure to alterations in glutamate metabolism. This provides novel directions for the interrogation of the impact of cannabis use on brain neurochemistry.


Country-level gender inequality is associated with structural differences in the brains of women and men.

  • André Zugman‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.


Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms.

  • Joeffre Braga‎ et al.
  • JAMA psychiatry‎
  • 2023‎

Persistent depressive symptoms, often accompanied by cognitive symptoms, commonly occur after COVID-19 illness (hereinafter termed COVID-DC, DC for depressive and/or cognitive symptoms). In patients with COVID-DC, gliosis, an inflammatory change, was suspected, but measurements of gliosis had not been studied in the brain for this condition.


Amyloid deposition in semantic dementia: a positron emission tomography study.

  • Eric E Brown‎ et al.
  • International journal of geriatric psychiatry‎
  • 2016‎

Pittsburgh compound B ([11C]-PIB) identifies amyloid-β (Aβ) deposition in vivo. Asymptomatic Aβ deposition has been reported consistently in some healthy older subjects. Of patients with frontotemporal dementia, those who have later onset have a higher potential for Aβ deposition.


Mitochondrial function in individuals at clinical high risk for psychosis.

  • Tania Da Silva‎ et al.
  • Scientific reports‎
  • 2018‎

Alterations in mitochondrial function have been implicated in the etiology of schizophrenia. Most studies have investigated alterations in mitochondrial function in patients in which the disorder is already established; however, whether mitochondrial dysfunction predates the onset of psychosis remains unknown. We measured peripheral mitochondrial complex (I-V) function and lactate/pyruvate levels in 27 antipsychotic-naïve individuals at clinical high risk for psychosis (CHR) and 16 healthy controls. We also explored the association between mitochondrial function and brain microglial activation and glutathione levels using a translocator protein 18 kDa [18F]FEPPA PET scan and 1H-MRS scan, respectively. There were no significant differences in mitochondrial complex function and lactate/pyruvate levels between CHR and healthy controls. In the CHR group, mitochondrial complex III function (r = -0.51, p = 0.008) and lactate levels (r = 0.61, p = 0.004) were associated with prodromal negative symptoms. As previously reported, there were no significant differences in microglial activation and glutathione levels between groups, however, mitochondrial complex IV function was inversely related to microglial activation in the hippocampus in CHR (r = -0.42, p = 0.04), but not in healthy controls. In conclusion, alterations in mitochondrial function are not yet evident in CHR, but may relate to the severity of prodromal symptoms, particularly negative symptoms.


Normative modeling of brain morphometry in Clinical High-Risk for Psychosis.

  • Shalaila S Haas‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in the majority of individuals at psychosis risk may be nested within the range observed in healthy individuals.


Genetically Predicted Brain C4A Expression Is Associated With TSPO and Hippocampal Morphology.

  • Tania Da Silva‎ et al.
  • Biological psychiatry‎
  • 2021‎

Alterations in the immune system, particularly C4A, have been implicated in the pathophysiology of schizophrenia. C4A promotes synapse elimination by microglia in preclinical models; however, it is unknown whether this process is also present in living humans and how it affects brain morphology.


Heterogeneity of Striatal Dopamine Function in Schizophrenia: Meta-analysis of Variance.

  • Stefan P Brugger‎ et al.
  • Biological psychiatry‎
  • 2020‎

It has been hypothesized that dopamine function in schizophrenia exhibits heterogeneity in excess of that seen in the general population. However, no previous study has systematically tested this hypothesis.


Peripheral cytokine and fatty acid associations with neuroinflammation in AD and aMCI patients: An exploratory study.

  • Giulia Cisbani‎ et al.
  • Brain, behavior, and immunity‎
  • 2020‎

Neuroinflammation is thought to be important in the progression of Alzheimer's disease (AD). To evaluate cerebral inflammation radioligands that target TSPO, a translocator protein strongly expressed in microglia and macrophages during inflammation, can be used in conjunction with positron emission tomography (PET) imaging. In AD patients, neuroinflammation is up-regulated compared to both healthy volunteers as well as to subjects with amnestic Mild Cognitive Impairment. Peripheral biomarkers, such as serum cytokines and total fatty acids (FAs), can also be indicative of the inflammatory state of subjects with neurodegenerative disorders. To understand whether peripheral biomarkers are predictive of neuroinflammation we conducted a secondary exploratory analysis of two TSPO imaging studies conducted in subjects with AD, aMCI and aged matched healthy volunteers. We examined the association between candidate peripheral biomarkers (including amyloid beta, cytokines and serum total fatty acids) with brain TSPO levels. Our results showed that serum IL-6 and IL-10 are higher in AD compared to the aMCI and healthy volunteers while levels of some fatty acids are modulated during the disease. A limited number of associations were observed between region-specific inflammation and fatty acids in aMCI patients, and between amyloid beta 42 and brain inflammation in AD, however no associations were present with systemic cytokines. Our study suggests that while TSPO binding and systemic IL-6 and IL-10 were elevated in AD, serum amyloid beta, cytokines and fatty acids were generally not predictive of the disease nor correlated with neuroinflammation.


Imaging Striatal Microglial Activation in Patients with Parkinson's Disease.

  • Yuko Koshimori‎ et al.
  • PloS one‎
  • 2015‎

This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson's disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.


Validating mitochondrial electron transport chain content in individuals at clinical high risk for psychosis.

  • Abbie Wu‎ et al.
  • Scientific reports‎
  • 2019‎

Altered mitochondrial electron transport chain function has been implicated in the pathophysiology and etiology of schizophrenia. To date, our previously published study (i.e. first cohort) is still the only study to demonstrate that mitochondrial electron transport chain is not altered in white blood cells from individuals at clinical high risk for psychosis. Here, we aimed to replicate our previous findings with an independent set of samples and validate the levels of mitochondrial complex I-V content in individuals at clinical high risk for psychosis. We demonstrated that the second cohort (i.e. validation cohort) expressed similar results as the first cohort. We combined the first cohort study with the second cohort and once more validated a lack of differential levels in mitochondrial complex I-V content between the two groups. In addition, we were able to validate a correlation between complex III content and prodromal negative symptom severity when the two cohorts studies were combined. Additionally, a correlation between complex V content and prodromal disorganization symptom severity was found when the two cohorts were combined. In conclusion, our results showed that dysfunction of the mitochondrial electron transport chain is not detected in peripheral blood mononuclear cells of individuals in the putative prodromal stage of schizophrenia.


Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis.

  • Helen Baldwin‎ et al.
  • Translational psychiatry‎
  • 2022‎

Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.


Normative Modeling of Brain Morphometry in Clinical High Risk for Psychosis.

  • ENIGMA Clinical High Risk for Psychosis Working Group‎ et al.
  • JAMA psychiatry‎
  • 2024‎

The lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in individuals at psychosis risk may be nested within the range observed in healthy individuals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: