Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Rac1 modulates the formation of primordial follicles by facilitating STAT3-directed Jagged1, GDF9 and BMP15 transcription in mice.

  • Lihua Zhao‎ et al.
  • Scientific reports‎
  • 2016‎

The size of the primordial follicle pool determines the reproductive potential of mammalian females, and establishment of the pool is highly dependent on specific genes expression. However, the molecular mechanisms by which the essential genes are regulated coordinately to ensure primordial follicle assembly remain a mystery. Here, we show that the small GTPase Rac1 plays an indispensable role in controlling the formation of primordial follicles in mouse ovary. Employing fetal mouse ovary organ culture system, we demonstrate that disruption of Rac1 retarded the breakdown of germline cell cysts while Rac1 overexpression accelerated the formation of primordial follicles. In addition, in vivo inhibitor injection resulted in the formation of multi-oocyte follicles. Subsequent investigation showed that Rac1 induced nuclear import of STAT3 by physical binding. In turn, nuclear STAT3 directly activated the transcription of essential oocyte-specific genes, including Jagged1, GDF9, BMP15 and Nobox. Further, GDF9 and BMP15 regulated the translation of Notch2 via mTORC1 activation in pregranulosa cells. Overexression or addition of Jagged1, GDF9 and BMP15 not only reversed the effect of Rac1 disruption, but also accelerated primordial follicle formation via Notch2 signaling activation. Collectively, these results indicate that Rac1 plays important roles as a key regulator in follicular assembly.


Mechanical hierarchy in the formation and modulation of cortical folding patterns.

  • Poorya Chavoshnejad‎ et al.
  • Scientific reports‎
  • 2023‎

The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.


A novel crosstalk between TLR4- and NOD2-mediated signaling in the regulation of intestinal inflammation.

  • Hajeong Kim‎ et al.
  • Scientific reports‎
  • 2015‎

Although Toll-like receptor 4 (TLR4)- and nucleotide-binding oligomerization domain 2 (NOD2)-mediated signaling mechanisms have been extensively studied individually, the crosstalk between them in the regulation of intestinal mucosal defense and tissue homeostasis has been underappreciated. Here, we uncover some novel activities of NOD2 by gene expression profiling revealing the global nature of the cross-regulation between TLR4- and NOD2-mediated signaling. Specifically, NOD2 is able to sense the intensity of TLR4-mediated signaling, resulting in either synergistic stimulation of Interluekin-12 (IL-12) production when the TLR signaling intensity is low; or in the inhibition of IL-12 synthesis and maintenance of intestinal mucosal homeostasis when the TLR signaling intensifies. This balancing act is mediated through receptor-interacting serine/threonine kinase 2, and the transcriptional regulator CCAAT/enhancer-binding protein α (C/EBPα) via its serine 248 phosphorylation by Protein Kinase C. Mice deficient in C/EBPα in the hematopoietic compartment are highly susceptible to chemically induced experimental colitis in an IL-12-dependent manner. Additionally, in contrast to the dogma, we find that the major Crohn's disease-associated NOD2 mutations could cause a primarily immunodeficient phenotype by selectively impairing TLR4-mediated IL-12 production and host defense. To restore the impaired homeostasis would be a way forward to developing novel therapeutic strategies for inflammatory bowel diseases.


Cortical Folding Pattern and its Consistency Induced by Biological Growth.

  • Mir Jalil Razavi‎ et al.
  • Scientific reports‎
  • 2015‎

Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain's functional organization. Understanding the mechanism of the brain's convoluted patterns can provide useful clues into normal and pathological brain function. In this paper, the cortical folding phenomenon is interpreted both analytically and computationally, and, in some cases, the findings are validated with experimental observations. The living human brain is modeled as a soft structure with a growing outer cortex and inner core to investigate its developmental mechanism. Analytical interpretations of differential growth of the brain model provide preliminary insight into critical growth ratios for instability and crease formation of the developing brain. Since the analytical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the crease formation and secondary morphological folds of the developing brain. Results demonstrate that the growth ratio of the cortex to core of the brain, the initial thickness, and material properties of both cortex and core have great impacts on the morphological patterns of the developing brain. Lastly, we discuss why cortical folding is highly correlated and consistent by presenting an intriguing gyri-sulci formation comparison.


Peptide-based scaffolds for the culture and maintenance of primary human hepatocytes.

  • Douglas MacPherson‎ et al.
  • Scientific reports‎
  • 2021‎

We report here the use of a nanofibrous hydrogel as a 3D scaffold for the culture and maintenance of functional primary human hepatocytes. The system is based on the cooperative assembly of a fiber-forming peptide component, fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF), and the integrin-binding functional peptide ligand, Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) into a nanofibrous gel at physiological pH. This Fmoc-FF/RGD hydrogel was formulated to provide a biomimetic microenvironment with some critical features such as mechanical properties and nanofiber morphology, which were optimized to support hepatocyte culture. The material was shown to support maintenance and function of encapsulated primary human hepatocytes as indicated by actin staining, qRT-PCR, and functional cytochrome P450 assays. The designed gel was shown to outperform Matrigel in cytochrome P450 functional assays. The hydrogel may prove useful for liver development and disease models, as well as providing insights into the design of future implantable scaffolds for the regeneration of liver tissue in patients with liver disease.


CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus.

  • Vyas Ramanan‎ et al.
  • Scientific reports‎
  • 2015‎

Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients.


Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation.

  • Wei Song‎ et al.
  • Scientific reports‎
  • 2015‎

Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies.


Targeting the PI3K/AKT pathway via GLI1 inhibition enhanced the drug sensitivity of acute myeloid leukemia cells.

  • Hui Liang‎ et al.
  • Scientific reports‎
  • 2017‎

Combination targeted therapy is commonly used to treat acute myeloid leukemia (AML) patients, particularly in refractory/relapse (RR) population. However, concerns have been raised regarding the safety and patient tolerance of combination chemotherapy. It is critical to choose the appropriate treatment for precision therapy. We performed genome-wide RNA profiling using RNA-Seq to compare the RR group and the complete remission (CR) group (a total of 42 adult AML patients). The Hedgehog (Hh) and PI3K/AKT pathways were upregulated in the RR population, which was further confirmed by western blot and/or qPCR. Overexpression of GLI1 in AML cells led to increased AKT phosphorylation and decreased drug sensitivity, which was attenuated by GLI1 inhibition. By contrast, neither the expression of GLI1 nor apoptosis in response to Ara-C treatment of AML cells was significantly affected by PI3K inhibition. Furthermore, co-inhibition of GLI1 and PI3K induced apoptosis of hematopoietic stem/progenitor cells (HSPCs), which raised serious concerns about the side effects of this treatment. These results indicated that GLI1 inhibition alone, but not combined inhibition, is sufficient to enhance AML drug sensitivity, which provides a novel therapeutic strategy for AML treatment.


Mechanism of Consistent Gyrus Formation: an Experimental and Computational Study.

  • Tuo Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

As a significant type of cerebral cortical convolution pattern, the gyrus is widely preserved across species. Although many hypotheses have been proposed to study the underlying mechanisms of gyrus formation, it is currently still far from clear which factors contribute to the regulation of consistent gyrus formation. In this paper, we employ a joint analysis scheme of experimental data and computational modeling to investigate the fundamental mechanism of gyrus formation. Experimental data on mature human brains and fetal brains show that thicker cortices are consistently found in gyral regions and gyral cortices have higher growth rates. We hypothesize that gyral convolution patterns might stem from heterogeneous regional growth in the cortex. Our computational simulations show that gyral convex patterns may occur in locations where the cortical plate grows faster than the cortex of the brain. Global differential growth can only produce a random gyrification pattern, but it cannot guarantee gyrus formation at certain locations. Based on extensive computational modeling and simulations, it is suggested that a special area in the cerebral cortex with a relatively faster growth speed could consistently engender gyri.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: