Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Chemical activation of a food deprivation signal extends lifespan.

  • Mark Lucanic‎ et al.
  • Aging cell‎
  • 2016‎

Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology.


Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm.

  • Eliana Romero‎ et al.
  • Neuron‎
  • 2008‎

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of a translated CAG repeat in the N terminus of the huntingtin (htt) protein. Here we describe the generation and characterization of a full-length HD Drosophila model to reveal a previously unknown disease mechanism that occurs early in the course of pathogenesis, before expanded htt is imported into the nucleus in detectable amounts. We find that expanded full-length htt (128Qhtt(FL)) leads to behavioral, neurodegenerative, and electrophysiological phenotypes. These phenotypes are caused by a Ca2+-dependent increase in neurotransmitter release efficiency in 128Qhtt(FL) animals. Partial loss of function in synaptic transmission (syntaxin, Snap, Rop) and voltage-gated Ca2+ channel genes suppresses both the electrophysiological and the neurodegenerative phenotypes. Thus, our data indicate that increased neurotransmission is at the root of neuronal degeneration caused by expanded full-length htt during early stages of pathogenesis.


Natural Genetic Variation in Yeast Reveals That NEDD4 Is a Conserved Modifier of Mutant Polyglutamine Aggregation.

  • Theodore W Peters‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2018‎

A feature common to late onset proteinopathic disorders is an accumulation of toxic protein conformers and aggregates in affected tissues. In the search for potential drug targets, many studies used high-throughput screens to find genes that modify the cytotoxicity of misfolded proteins. A complement to this approach is to focus on strategies that use protein aggregation as a phenotypic readout to identify pathways that control aggregate formation and maintenance. Here we use natural variation between strains of budding yeast to genetically map loci that influence the aggregation of a polyglutamine-containing protein derived from a mutant form of huntingtin, the causative agent in Huntington disease. Linkage analysis of progeny derived from a cross between wild and laboratory yeast strains revealed two polymorphic loci that modify polyglutamine aggregation. One locus contains the gene RFU1 which modifies ubiquitination states of misfolded proteins targeted by the E3-ubiquitin ligase complex Rsp5 Activity of the Rsp5 complex, and the mammalian homolog NEDD4, are critical in maintaining protein homeostasis in response to proteomic stress. Our analysis also showed linkage of the aggregation phenotype to a distinct locus containing a gene encoding the Rsp5-interacting Bul2 protein. Allele-swap experiments validated the impact of both RFU1 and BUL2 on huntingtin aggregation. Furthermore, we found that the nematode Caenorhabditis elegans' ortholog of Rsp5, wwp-1, also negatively regulates polyglutamine aggregation. Knockdown of the NEDD4 in human cells likewise altered polyglutamine aggregation. Taken together, these results implicate conserved processes involving the ubiquitin regulation network that modify protein aggregation and provide novel therapeutic targets for polyglutamine and other protein folding diseases.


Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan.

  • Pedro Reis-Rodrigues‎ et al.
  • Aging cell‎
  • 2012‎

While it is generally recognized that misfolding of specific proteins can cause late-onset disease, the contribution of protein aggregation to the normal aging process is less well understood. To address this issue, a mass spectrometry-based proteomic analysis was performed to identify proteins that adopt sodium dodecyl sulfate (SDS)-insoluble conformations during aging in Caenorhabditis elegans. SDS-insoluble proteins extracted from young and aged C. elegans were chemically labeled by isobaric tagging for relative and absolute quantification (iTRAQ) and identified by liquid chromatography and mass spectrometry. Two hundred and three proteins were identified as being significantly enriched in an SDS-insoluble fraction in aged nematodes and were largely absent from a similar protein fraction in young nematodes. The SDS-insoluble fraction in aged animals contains a diverse range of proteins including a large number of ribosomal proteins. Gene ontology analysis revealed highly significant enrichments for energy production and translation functions. Expression of genes encoding insoluble proteins observed in aged nematodes was knocked down using RNAi, and effects on lifespan were measured. 41% of genes tested were shown to extend lifespan after RNAi treatment, compared with 18% in a control group of genes. These data indicate that genes encoding proteins that become insoluble with age are enriched for modifiers of lifespan. This demonstrates that proteomic approaches can be used to identify genes that modify lifespan. Finally, these observations indicate that the accumulation of insoluble proteins with diverse functions may be a general feature of aging.


Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease.

  • John P Miller‎ et al.
  • Neuron‎
  • 2010‎

Proteolytic cleavage of huntingtin (Htt) is known to be a key event in the pathogenesis of Huntington's disease (HD). Our understanding of proteolytic processing of Htt has thus far focused on the protease families-caspases and calpains. Identifying critical proteases involved in Htt proteolysis and toxicity using an unbiased approach has not been reported. To accomplish this, we designed a high-throughput western blot-based screen to examine the generation of the smallest N-terminal polyglutamine-containing Htt fragment. We screened 514 siRNAs targeting the repertoire of human protease genes. This screen identified 11 proteases that, when inhibited, reduced Htt fragment accumulation. Three of these belonged to the matrix metalloproteinase (MMP) family. One family member, MMP-10, directly cleaves Htt and prevents cell death when knocked down in striatal Hdh(111Q/111Q) cells. Correspondingly, MMPs are activated in HD mouse models, and loss of function of Drosophila homologs of MMPs suppresses Htt-induced neuronal dysfunction in vivo.


A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease.

  • John P Miller‎ et al.
  • PLoS genetics‎
  • 2012‎

A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.


Tor1 regulates protein solubility in Saccharomyces cerevisiae.

  • Theodore W Peters‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.


Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

  • Linda S Kaltenbach‎ et al.
  • PLoS genetics‎
  • 2007‎

Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to co-immunoprecipitate with full-length Htt from mouse brain. These studies demonstrate that high-throughput screening for protein interactions combined with genetic validation in a model organism is a powerful approach for identifying novel candidate modifiers of polyglutamine toxicity.


A human protein interaction network shows conservation of aging processes between human and invertebrate species.

  • Russell Bell‎ et al.
  • PLoS genetics‎
  • 2009‎

We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.


Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

  • Adam L Orr‎ et al.
  • PloS one‎
  • 2014‎

Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP) discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5) were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i) values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.


Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins.

  • Marissa Vignali‎ et al.
  • Malaria journal‎
  • 2008‎

In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: