Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 105 papers

A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains.

  • Mark D Preston‎ et al.
  • Nature communications‎
  • 2014‎

Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (~92%) and easily adapted to aid case management in the field and survey parasite migration worldwide.


A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots.

  • Philip Bejon‎ et al.
  • eLife‎
  • 2014‎

Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or 'hotspots' of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance.DOI: http://dx.doi.org/10.7554/eLife.02130.001.


Haemolysis and haem oxygenase-1 induction during persistent "asymptomatic" malaria infection in Burkinabé children.

  • Jason P Mooney‎ et al.
  • Malaria journal‎
  • 2018‎

The haemolysis associated with clinical episodes of malaria results in the liberation of haem, which activates the enzyme haem oxygenase-1 (HO-1). HO-1 has been shown to reduce neutrophil function and increase susceptibility to invasive bacterial disease. However, the majority of community-associated malaria infections are subclinical, often termed "asymptomatic" and the consequences of low-grade haemolysis during subclinical malaria infection are unknown.


Pharmacology, Pharmacokinetics and Pharmacodynamics of Eculizumab, and Possibilities for an Individualized Approach to Eculizumab.

  • Kioa Lente Wijnsma‎ et al.
  • Clinical pharmacokinetics‎
  • 2019‎

Eculizumab is the first drug approved for the treatment of complement-mediated diseases, and current dosage schedules result in large interindividual drug concentrations. This review provides insight into the pharmacokinetic and pharmacodynamic properties of eculizumab, both for reported on-label (paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, generalized myasthenia gravis) and off-label (hematopoietic stem cell transplantation-associated thrombotic microangiopathy) indications. Furthermore, we discuss the potential of therapeutic drug monitoring to individualize treatment and reduce costs.


Neurodevelopmental and behavioral consequences of perinatal exposure to the HIV drug efavirenz in a rodent model.

  • Lisa van de Wijer‎ et al.
  • Translational psychiatry‎
  • 2019‎

Efavirenz is recommended as a preferred first-line drug for women of childbearing potential living with human immunodeficiency virus. Efavirenz is known for its central nervous system side effects, which are partly mediated by serotonergic actions. The neurotransmitter serotonin exerts neurotrophic effects during neurodevelopment and antenatal exposure to serotonergic agents has been linked to developmental delay. Although the teratogenic risks of efavirenz appear to be minimal, data on long-term developmental effects remain scarce. Here, we aimed to investigate the short- and long-term behavioral and neurodevelopmental effects of perinatal efavirenz exposure. We treated pregnant rats from gestation day 1 until postnatal day 7 with efavirenz (100 mg/kg) or vehicle. We measured behavioral outcomes in male offspring during the first 3 postnatal weeks, adolescence and adulthood, and conducted brain immunohistochemistry analyses after sacrifice. Perinatal efavirenz exposure resulted in reduced body weight and delayed reflex and motor development. During adulthood, we observed a decrease in the total number of cells and mature neurons in the motor cortex, as well as an increase in the number of Caspase-3-positive cells and serotonergic fibers. Together, our data show a developmental delay and persistent changes in the brain motor cortex of rats exposed to efavirenz perinatally. Because over 1 million children born annually are exposed to antiretroviral therapy, our findings underline the need for clinical studies on long-term neurodevelopmental outcomes of perinatal exposure to efavirenz.


Liver Injury in Uncomplicated Malaria is an Overlooked Phenomenon: An Observational Study.

  • Isaie J Reuling‎ et al.
  • EBioMedicine‎
  • 2018‎

Liver injury is a known feature of severe malaria, but is only incidentally investigated in uncomplicated disease. In such cases, drug-induced hepatotoxicity is often thought to be the primary cause of the observed liver injury, and this can be a major concern in antimalaria drug development. We investigated liver function test (LFT) abnormalities in patients with imported uncomplicated malaria, and in Controlled Human Malaria Infection (CHMI) studies.


Functional antibodies against Plasmodium falciparum sporozoites are associated with a longer time to qPCR-detected infection among schoolchildren in Burkina Faso.

  • Aissata Barry‎ et al.
  • Wellcome open research‎
  • 2018‎

Background: Individuals living in malaria-endemic regions develop immunity against severe malaria, but it is unclear whether immunity against pre-erythrocytic stages that blocks initiation of blood-stage infection after parasite inoculation develops following continuous natural exposure. Methods: We cleared schoolchildren living in an area (health district of Saponé, Burkina Faso) with highly endemic seasonal malaria of possible sub-patent infections and examined them weekly for incident infections by nested PCR. Plasma samples collected at enrolment were used to quantify antibodies to the pre-eryhrocytic-stage antigens circumsporozoite protein (CSP) and Liver stage antigen 1 (LSA-1). In vitro sporozoite gliding inhibition and hepatocyte invasion inhibition by naturally acquired antibodies were assessed using Plasmodium falciparum NF54 sporozoites. Associations between antibody responses, functional pre-erythrocytic immunity phenotypes and time to infection detected by 18S quantitative PCR were studied. Results: A total of 51 children were monitored. Anti-CSP antibody titres showed a positive association with sporozoite gliding motility inhibition (P<0.0001, Spearman's ρ=0.76). In vitro hepatocyte invasion was inhibited by naturally acquired antibodies (median inhibition, 19.4% [IQR 15.2-40.9%]), and there were positive correlations between invasion inhibition and gliding inhibition (P=0.005, Spearman's ρ=0.67) and between invasion inhibition and CSP-specific antibodies (P=0.002, Spearman's ρ=0.76). Survival analysis indicated longer time to infection in individuals displaying higher-than-median sporozoite gliding inhibition activity (P=0.01), although this association became non-significant after adjustment for blood-stage immunity (P = 0.06). Conclusions: In summary, functional antibodies against the pre-erythrocytic stages of malaria infection are acquired in children who are repeatedly exposed to Plasmodium parasites. This immune response does not prevent them from becoming infected during a malaria transmission season, but might delay the appearance of blood stage parasitaemia. Our approach could not fully separate the effects of pre-erythrocytic-specific and blood-stage-specific antibody-mediated immune responses in vivo; epidemiological studies powered and designed to address this important question should become a research priority.


Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity.

  • Will J R Stone‎ et al.
  • Nature communications‎
  • 2018‎

Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes.


CYP2D6 Polymorphisms and the Safety and Gametocytocidal Activity of Single-Dose Primaquine for Plasmodium falciparum.

  • Helmi Pett‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

Single-dose primaquine (PQ) clears mature gametocytes and reduces the transmission of Plasmodium falciparum after artemisinin combination therapy. Genetic variation in CYP2D6, the gene producing the drug-metabolizing enzyme cytochrome P450 2D6 (CYP2D6), influences plasma concentrations of PQ and its metabolites and is associated with PQ treatment failure in Plasmodium vivax malaria. Using blood and saliva samples of varying quantity and quality from 8 clinical trials across Africa (n = 1,076), we were able to genotype CYP2D6 for 774 samples (72%). We determined whether genetic variation in CYP2D6 has implications for PQ efficacy in individuals with gametocytes at the time of PQ administration (n = 554) and for safety in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals treated with PQ (n = 110). Individuals with a genetically inferred CYP2D6 poor/intermediate metabolizer status had a higher gametocyte prevalence on day 7 or 10 after PQ than those with an extensive/ultrarapid CYP2D6 metabolizer status (odds ratio [OR] = 1.79 [95% confidence interval {CI}, 1.10, 2.90]; P = 0.018). The mean minimum hemoglobin concentrations during follow-up for G6PD-deficient individuals were 11.8 g/dl for CYP2D6 extensive/ultrarapid metabolizers and 12.1 g/dl for CYP2D6 poor/intermediate metabolizers (P = 0. 803). CYP2D6 genetically inferred metabolizer status was also not associated with anemia following PQ treatment (P = 0.331). We conclude that CYP2D6 poor/intermediate metabolizer status may be associated with prolonged gametocyte carriage after treatment with single-low-dose PQ but not with treatment safety.


Prevalence of Plasmodium falciparum Pfcrt and Pfmdr1 alleles in settings with different levels of Plasmodium vivax co-endemicity in Ethiopia.

  • Elifaged Hailemeskel‎ et al.
  • International journal for parasitology. Drugs and drug resistance‎
  • 2019‎

Plasmodium falciparum and P. vivax co-exist at different endemicity levels across Ethiopia. For over two decades Artemether-Lumefantrine (AL) is the first line treatment for uncomplicated P. falciparum, while chloroquine (CQ) is still used to treat P. vivax. It is currently unclear whether a shift from CQ to AL for P. falciparum treatment has implications for AL efficacy and results in a reversal of mutations in genes associated to CQ resistance, given the high co-endemicity of the two species and the continued availability of CQ for the treatment of P. vivax. This study thus assessed the prevalence of Pfcrt-K76T and Pfmdr1-N86Y point mutations in P. falciparum. 18S RNA gene based nested PCR confirmed P. falciparum samples (N = 183) collected through community and health facility targeted cross-sectional surveys from settings with varying P. vivax and P. falciparum endemicity were used. The proportion of Plasmodium infections that were P. vivax was 62.2% in Adama, 41.4% in Babile, 30.0% in Benishangul-Gumuz to 6.9% in Gambella. The Pfcrt-76T mutant haplotype was observed more from samples with higher endemicity of P. vivax as being 98.4% (61/62), 100% (31/31), 65.2% (15/23) and 41.5% (22/53) in samples from Adama, Babile, Benishangul-Gumuz and Gambella, respectively. However, a relatively higher proportion of Pfmdr1-N86 allele (77.3-100%) were maintained in all sites. The observed high level of the mutant Pfcrt-76T allele in P. vivax co-endemic sites might require that utilization of CQ needs to be re-evaluated in settings co-endemic for the two species. A country-wide assessment is recommended to clarify the implication of the observed level of variation in drug resistance markers on the efficacy of AL-based treatment against uncomplicated P. falciparum malaria.


Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions.

  • Jetske G de Boer‎ et al.
  • Scientific reports‎
  • 2017‎

Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection. We compared the chemical composition and attractiveness to Anopheles coluzzii mosquitoes of skin odours from participants that were infected by Controlled Human Malaria Infection with Plasmodium falciparum. Skin odour composition differed between parasitologically negative and positive samples, with positive samples collected on average two days after parasites emerged from the liver into the blood, being associated with low densities of asexual parasites and the absence of gametocytes. We found a significant reduction in mosquito attraction to skin odour during infection for one experiment, but not in a second experiment, possibly due to differences in parasite strain. However, it does raise the possibility that infection can affect mosquito behaviour. Indeed, several volatile compounds were identified that can influence mosquito behaviour, including 2- and 3-methylbutanal, 3-hydroxy-2-butanone, and 6-methyl-5-hepten-2-one. To better understand the impact of our findings on Plasmodium transmission, controlled studies are needed in participants with gametocytes and higher parasite densities.


Rethinking the Application of Pemetrexed for Patients with Renal Impairment: A Pharmacokinetic Analysis.

  • Nikki de Rouw‎ et al.
  • Clinical pharmacokinetics‎
  • 2021‎

Pemetrexed is used for the treatment for non-small cell lung cancer and mesothelioma. Patients with renal impairment are withheld treatment with this drug as it is unknown what dose is well tolerated in this population.


Markers of sulfadoxine-pyrimethamine resistance in Eastern Democratic Republic of Congo; implications for malaria chemoprevention.

  • Marit van Lenthe‎ et al.
  • Malaria journal‎
  • 2019‎

Sulfadoxine-pyrimethamine (SP) is a cornerstone of malaria chemoprophylaxis and is considered for programmes in the Democratic Republic of Congo (DRC). However, SP efficacy is threatened by drug resistance, that is conferred by mutations in the dhfr and dhps genes. The World Health Organization has specified that intermittent preventive treatment for infants (IPTi) with SP should be implemented only if the prevalence of the dhps K540E mutation is under 50%. There are limited current data on the prevalence of resistance-conferring mutations available from Eastern DRC. The current study aimed to address this knowledge gap.


Drug level testing as a strategy to determine eligibility for drug resistance testing after failure of ART: a retrospective analysis of South African adult patients on second-line ART.

  • Lucas E Hermans‎ et al.
  • Journal of the International AIDS Society‎
  • 2020‎

When protease inhibitor (PI)-based second-line ART fails, guidelines recommend drug resistance testing and individualized third-line treatment. However, PI-resistant viral strains are rare and drug resistance testing is costly. We investigated whether less costly PI-exposure testing can be used to select those patients who would benefit most from drug resistance testing.


Chloroquine Potentiates Primaquine Activity against Active and Latent Hepatic Plasmodia Ex Vivo: Potentials and Pitfalls.

  • Laurent Dembélé‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2020‎

For a long while, 8-aminoquinoline compounds have been the only therapeutic agents against latent hepatic malaria parasites. These have poor activity against the blood-stage plasmodia causing acute malaria and must be used in conjunction with partner blood schizontocidal agents. We examined the impacts of one such agent, chloroquine, upon the activity of primaquine, an 8-aminoquinoline, against hepatic stages of Plasmodium cynomolgi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium falciparum within several ex vivo systems-primary hepatocytes of Macaca fascicularis, primary human hepatocytes, and stably transformed human hepatocarcinoma cell line HepG2. Primaquine exposures to formed hepatic schizonts and hypnozoites of P. cynomolgi in primary simian hepatocytes exhibited similar 50% inhibitory concentration (IC50) values near 0.4 μM, whereas chloroquine in the same system exhibited no inhibitory activities. Combining chloroquine and primaquine in this system decreased the observed primaquine IC50 for all parasite forms in a chloroquine dose-dependent manner by an average of 18-fold. Chloroquine also decreased the primaquine IC50 against hepatic P. falciparum in primary human hepatocytes, P. berghei in simian primary hepatocytes, and P. yoelii in primary human hepatocytes. Chloroquine had no impact on primaquine IC50 against P. yoelii in HepG2 cells and, likewise, had no impact on the IC50 of atovaquone (hepatic schizontocide) against P. falciparum in human hepatocytes. We describe important sources of variability in the potentiation of primaquine activity by chloroquine in these systems. Chloroquine potentiated primaquine activity against hepatic forms of several plasmodia. We conclude that chloroquine specifically potentiated 8-aminoquinoline activities against active and dormant hepatic-stage plasmodia in normal primary hepatocytes but not in a hepatocarcinoma cell line.


A portfolio of geographically distinct laboratory-adapted Plasmodium falciparum clones with consistent infection rates in Anopheles mosquitoes.

  • Marga van de Vegte-Bolmer‎ et al.
  • Malaria journal‎
  • 2021‎

The ability to culture Plasmodium falciparum continuously in vitro has enabled stable access to asexual and sexual parasites for malaria research. The portfolio of isolates has remained limited and research is still largely based on NF54 and its derived clone 3D7. Since 1978, isolates were collected and cryopreserved at Radboudumc from patients presenting at the hospital. Here, procedures are described for culture adaptation of asexual parasites, cloning and production of sexual stage parasites responsible for transmission (gametocytes) and production of oocysts in Anopheles mosquitoes. This study aimed to identify new culture-adapted transmissible P. falciparum isolates, originating from distinct geographical locations.


Highly potent, naturally acquired human monoclonal antibodies against Pfs48/45 block Plasmodium falciparum transmission to mosquitoes.

  • Amanda Fabra-García‎ et al.
  • Immunity‎
  • 2023‎

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 μg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


The Pharmacoeconomic Benefits of Pemetrexed Dose Individualization in Patients With Lung Cancer.

  • Nikki de Rouw‎ et al.
  • Clinical pharmacology and therapeutics‎
  • 2022‎

Neutropenia is a dose-related treatment-limiting and costly adverse event of pemetrexed. We postulate that individualized dosing reduces the incidence of neutropenia. The aims of this study were (i) to investigate the costs of pemetrexed-related neutropenia and (ii) to determine the pharmacoeconomic benefits of individualized dosing of pemetrexed in terms of budget impact, yearly cost savings, and reduction in severe neutropenia. Retrospective data on the treatment of grade 3 or higher neutropenia during pemetrexed-based chemotherapy were collected from three Dutch hospitals to determine the mean healthcare consumption during a neutropenic episode. Subsequently, Monte Carlo simulations were performed using a validated pharmacokinetic/pharmacodynamic model to predict the neutropenia incidence during four cycles for standard dosing of pemetrexed and individualized dosing. The mean costs per neutropenia and the expected neutropenia incidence were combined to calculate the budget impact and cost savings. We found that the average costs per pemetrexed-associated neutropenic episode to be €1,490 (US $1,674). The neutropenia incidence for the standard and individualized pemetrexed dosing strategies were 12.7% and 9.9%, respectively. This resulted in total expected neutropenia-related costs of ~ €3.0 million (US $3.372 million) and €2.4 million (US $2.697 million), respectively. Taking the number of patients eligible for pemetrexed treatment into account, individualized dosing could result in saving €686,000 (US $770,995) on a yearly basis in the Netherlands alone. Individualized dosing of pemetrexed can decrease the incidence of neutropenia and thus result in a significant decrease in neutropenia-related costs and decreased risk of hospitalization or even death while maintaining therapeutic exposure.


Hijacking the human complement inhibitor C4b-binding protein by the sporozoite stage of the Plasmodium falciparum parasite.

  • Ayman Khattab‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The complement system is considered the first line of defense against pathogens. Hijacking complement regulators from blood is a common evasion tactic of pathogens to inhibit complement activation on their surfaces. Here, we report hijacking of the complement C4b-binding protein (C4bp), the regulator of the classical and lectin pathways of complement activation, by the sporozoite (SPZ) stage of the Plasmodium falciparum parasite. This was shown by direct binding of radiolabeled purified C4bp to live SPZs as well as by binding of C4bp from human serum to SPZs in indirect immunofluorescence assays. Using a membrane-bound peptide array, peptides from the N-terminal domain (NTD) of P. falciparum circumsporozoite protein (CSP) were found to bind C4bp. Soluble biotinylated peptide covering the same region on the NTD and a recombinantly expressed NTD also bound C4bp in a dose-dependent manner. NTD-binding site on C4bp was mapped to the CCP1-2 of the C4bp α-chain, a common binding site for many pathogens. Native CSP was also co-immunoprecipitated with C4bp from human serum. Preventing C4bp binding to the SPZ surface negatively affected the SPZs gliding motility in the presence of functional complement and malaria hyperimmune IgG confirming the protective role of C4bp in controlling complement activation through the classical pathway on the SPZ surface. Incorporating the CSP-C4bp binding region into a CSP-based vaccine formulation could induce vaccine-mediated immunity that neutralizes this immune evasion region and increases the vaccine efficacy.


Development of Plasmodium falciparum liver-stages in hepatocytes derived from human fetal liver organoid cultures.

  • Annie S P Yang‎ et al.
  • Nature communications‎
  • 2023‎

Plasmodium falciparum (Pf) parasite development in liver represents the initial step of the life-cycle in the human host after a Pf-infected mosquito bite. While an attractive stage for life-cycle interruption, understanding of parasite-hepatocyte interaction is inadequate due to limitations of existing in vitro models. We explore the suitability of hepatocyte organoids (HepOrgs) for Pf-development and show that these cells permitted parasite invasion, differentiation and maturation of different Pf strains. Single-cell messenger RNA sequencing (scRNAseq) of Pf-infected HepOrg cells has identified 80 Pf-transcripts upregulated on day 5 post-infection. Transcriptional profile changes are found involving distinct metabolic pathways in hepatocytes with Scavenger Receptor B1 (SR-B1) transcripts highly upregulated. A novel functional involvement in schizont maturation is confirmed in fresh primary hepatocytes. Thus, HepOrgs provide a strong foundation for a versatile in vitro model for Pf liver-stages accommodating basic biological studies and accelerated clinical development of novel tools for malaria control.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: