Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Transforming growth factor-β promotes aggressiveness and invasion of clear cell renal cell carcinoma.

  • Raviprakash T Sitaram‎ et al.
  • Oncotarget‎
  • 2016‎

The molecular mechanisms whereby transforming growth factor-β (TGF-β) promotes clear cell renal cell carcinoma (ccRCC) progression is elusive. The cell membrane bound TGF-β type I receptor (ALK5), was recently found to undergo proteolytic cleavage in aggressive prostate cancer cells, resulting in liberation and subsequent nuclear translocation of its intracellular domain (ICD), suggesting that ALK5-ICD might be a useful cancer biomarker. Herein, the possible correlation between ALK5 full length (ALK5-FL) and ALK5-ICD protein, phosphorylated Smad2/3 (pSmad2/3), and expression of TGF-β target gene PAI-1, was investigated in a clinical ccRCC material, in relation to tumor grade, stage, size and cancer specific survival. Expression of ALK5-FL, ALK5-ICD, pSmad2/3 and PAI-1 protein levels were significantly higher in higher stage and associated with adverse survival. ALK5-ICD, pSmad2/3 and PAI-1 correlated with higher grade, and ALK5-FL, pSmad2/3 and PAI-1 protein levels were significantly correlated with larger tumor size. Moreover, the functional role of the TGF-β - ALK5-ICD pathway were investigated in two ccRCC cell lines by treatment with ADAM/MMP2 inhibitor TAPI-2, which prevented TGF-β-induced ALK5-ICD generation, nuclear translocation, as well as cell invasion. The present study demonstrated that canonical TGF-β Smad2/3 pathway and generation of ALK5-ICD correlates with poor survival and invasion of ccRCC in vitro.


Telomere length in relation to immunological parameters in patients with renal cell carcinoma.

  • Ulrika Svenson‎ et al.
  • PloS one‎
  • 2013‎

Over the last decade, telomere length (TL) has gained attention as a potential biomarker in cancer disease. We previously reported that long blood TL was associated with a poorer outcome in patients with breast cancer and renal cell carcinoma. Based on these findings, we hypothesized that certain immunological components may have an impact on TL dynamics in cancer patients. One aim of the present study was to investigate a possible association between serum cytokines and TL of peripheral blood cells, tumors and corresponding kidney cortex, in patients with clear cell renal cell carcinoma. For this purpose, a multiplex cytokine assay was used. Correlation analysis revealed significant positive correlations between tumor TL and peripheral levels of three cytokines (IL-7, IL-8 and IL-10). In a parallel patient group with various kidney tumors, TL was investigated in whole blood and in immune cell subsets in relation to peripheral levels of regulatory T cells (Tregs). A significant positive association was found between whole blood TL and Treg levels. However, the strongest correlation was found between Tregs and TL of the T lymphocyte fraction. Thus, patients with higher Treg levels displayed longer T cell telomeres, which might reflect a suppressed immune system with fewer cell divisions and hence less telomere shortening. These results are in line with our earlier observation that long blood TL is an unfavorable prognostic factor for cancer-specific survival. In summary, we here show that immunological components are associated with TL in patients with renal cell carcinoma, providing further insight into the field of telomere biology in cancer.


VHL status regulates transforming growth factor-β signaling pathways in renal cell carcinoma.

  • Pramod Mallikarjuna‎ et al.
  • Oncotarget‎
  • 2018‎

To evaluate the role of pVHL in the regulation of TGF-β signaling pathways in clear cell renal cell carcinoma (ccRCC) as well as in non-ccRCC; the expression of pVHL, and the TGF-β pathway components and their association with clinicopathological parameters and patient's survival were explored. Tissue samples from 143 ccRCC and 58 non-ccRCC patients were examined by immunoblot. ccRCC cell lines were utilized for mechanistic in-vitro studies. Expression levels of pVHL were significantly lower in ccRCC compared with non-ccRCC. Non-ccRCC and ccRCC pVHL-High expressed similar levels of pVHL. Expression of the TGF-β type I receptor (ALK5) and intra-cellular domain were significantly higher in ccRCC compared with non-ccRCC. In non-ccRCC, expressions of ALK5-FL, ALK5-ICD, pSMAD2/3, and PAI-1 had no association with clinicopathological parameters and survival. In ccRCC pVHL-Low, ALK5-FL, ALK5-ICD, pSMAD2/3, and PAI-1 were significantly related with tumor stage, size, and survival. In ccRCC pVHL-High, the expression of PAI-1 was associated with stage and survival. In-vitro studies revealed that pVHL interacted with ALK5 to downregulate its expression through K48-linked poly-ubiquitination and proteasomal degradation, thus negatively controlling TGF-β induced cancer cell invasiveness. The pVHL status controls the ALK5 and can thereby regulate the TGF-β pathway, aggressiveness of tumors, and survival of the ccRCC and non-ccRCC patients.


TERT promoter mutations in clear cell renal cell carcinoma.

  • Ismail Hosen‎ et al.
  • International journal of cancer‎
  • 2015‎

We screened promoter region of the telomerase reverse transcriptase (TERT) for activating somatic mutations in 188 tumors from patients with clear cell renal cell carcinoma (ccRCC). Twelve tumors (6.4%) carried a mutation within the core promoter region of the gene. The mutations were less frequent in high grade tumors compared to low grade tumors [odds ratio (OR) = 0.15, 95% confidence interval (CI) = 0.03-0.72, p = 0.02]. Multivariate analysis for cause specific survival showed statistically significant poor outcome in patients with TERT promoter mutations [hazard ratio (HR) = 2.90, 95% CI = 1.13-7.39, p = 0.03]. A common polymorphism (rs2853669) within the locus seemed to act as a modifier of the effect of the mutations on patient survival as the noncarriers of the variant allele with the TERT promoter mutations showed worst survival (HR = 3.34, 95% CI = 1.24-8.98, p = 0.02). We also measured relative telomere length (RTL) in tumors and difference between tumors with and without the TERT promoter mutations was not statistically significant. Similarly, no difference in patient survival based on RTL in tumors was observed. Our study showed a relatively low frequency of TERT promoter mutations in ccRCC. Nevertheless, patients with the mutations, particularly in the absence of the rs2853669 variant showed the worst disease-specific survival. Thus, it is possible that the TERT promoter mutations define a small subset of tumors with an aggressive behavior.


Genome-wide association study identifies multiple risk loci for renal cell carcinoma.

  • Ghislaine Scelo‎ et al.
  • Nature communications‎
  • 2017‎

Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10-10), 3p22.1 (rs67311347, P=2.5 × 10-8), 3q26.2 (rs10936602, P=8.8 × 10-9), 8p21.3 (rs2241261, P=5.8 × 10-9), 10q24.33-q25.1 (rs11813268, P=3.9 × 10-8), 11q22.3 (rs74911261, P=2.1 × 10-10) and 14q24.2 (rs4903064, P=2.2 × 10-24). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.


Single nucleotide polymorphisms in the Wilms' tumour gene 1 in clear cell renal cell carcinoma.

  • Xingru Li‎ et al.
  • PloS one‎
  • 2013‎

The Wilms' tumour gene 1 (WT1) single nucleotide polymorphism (SNP) rs16754 has recently been described as an independent prognostic factor in acute myeloid leukaemia (AML) patients. It is of great interest to test whether WT1 SNPs can be used as a molecular marker in other cancer types in order to improve risk and treatment stratification. We performed sequencing analysis on all 10 exons of the WT1 gene in a total of 182 patients with clear cell renal cell carcinoma (ccRCC). Six different SNPs were identified, in descending order for minor allele frequency: rs2234582, rs16754, rs1799925, rs5030315, rs2234583, and rs2234581. At least one minor allele for WT1 SNP was identified in 61% of ccRCC patients. In the entire study population, only 6% carried two copies of the minor allele. The genotypes of WT1 SNPs in 78 tumour-free kidney tissue specimens were found to be in 95% concordance with corresponding tumour samples. No correlation was observed between WT1 SNP genotypes and RNA expression level. WT1 SNP genotypes did not associate with clinical and pathological characteristics. We found favourable outcomes associated with the homozygous minor allele for WT1 SNP. However, SNP genotypes did not show to be of prognostic significance when comparing wild-type versus homozygous or heterozygous for the minor allele in the entire cohort. None of the previously reported WT1 mutations in AML was found in the present study. A novel WT1 missense mutation was identified in only one patient. Our data suggest that common WT1 mutations are not involved in ccRCC. Due to too few cases harbouring the homozygous minor allele, the prognostic impact needs to be verified in larger study populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: