Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Redifferentiation of expanded human islet β cells by inhibition of ARX.

  • Orr Friedman-Mazursky‎ et al.
  • Scientific reports‎
  • 2016‎

Ex-vivo expansion of adult human islet β cells has been evaluated for generation of abundant insulin-producing cells for transplantation; however, lineage-tracing has demonstrated that this process results in β-cell dedifferentiation. Redifferentiation of β-cell-derived (BCD) cells can be achieved using a combination of soluble factors termed Redifferentiation Cocktail (RC); however, this treatment leads to redifferentiation of only a fraction of BCD cells. This study aimed at improving redifferentiation efficiency by affecting the balance of islet progenitor-cell transcription factors activated by RC treatment. Specifically, RC treatment induces the transcription factors PAX4 and ARX, which play key roles in directing pancreas endocrine progenitor cells into the β/δ or α/PP developmental pathways, respectively. Misactivation of ARX in RC-treated BCD cells may inhibit their redifferentiation into β cells. Blocking ARX expression by shRNA elevated insulin mRNA levels 12.8-fold, and more than doubled the number of insulin-positive BCD cells. ARX inhibition in expanded α-cell-derived cells treated with RC did not cause their transdifferentiation into insulin-producing cells. The combination of RC and ARX shRNA treatment may facilitate the generation of abundant insulin-producing cells for transplantation into patients with type 1 diabetes.


Myc coordinates transcription and translation to enhance transformation and suppress invasiveness.

  • Ran Elkon‎ et al.
  • EMBO reports‎
  • 2015‎

c-Myc is one of the major human proto-oncogenes and is often associated with tumor aggression and poor clinical outcome. Paradoxically, Myc was also reported as a suppressor of cell motility, invasiveness, and metastasis. Among the direct targets of Myc are many components of the protein synthesis machinery whose induction results in an overall increase in protein synthesis that empowers tumor cell growth. At present, it is largely unknown whether beyond the global enhancement of protein synthesis, Myc activation results in translation modulation of specific genes. Here, we measured Myc-induced global changes in gene expression at the transcription, translation, and protein levels and uncovered extensive transcript-specific regulation of protein translation. Particularly, we detected a broad coordination between regulation of transcription and translation upon modulation of Myc activity and showed the connection of these responses to mTOR signaling to enhance oncogenic transformation and to the TGFβ pathway to modulate cell migration and invasiveness. Our results elucidate novel facets of Myc-induced cellular responses and provide a more comprehensive view of the consequences of its activation in cancer cells.


High throughput gene expression analysis of the inner ear.

  • Ronna Hertzano‎ et al.
  • Hearing research‎
  • 2012‎

The mouse auditory and vestibular epithelia consist of a complex array of many different cell types. Over the last decade microarrays were used to characterize gene expression in the inner ear. Studies were performed on wild type mice to identify deafness genes, transcriptional networks activated during development, or identify miRNA with a functional role in the ear. Other studies focused on the molecular response of the inner ear to stimuli ranging from ototoxic medications to hypergravity and caloric restriction. Finally, microarrays were used to identify transcriptional networks activated downstream of deafness genes. As template-free high throughput gene expression profiling methods such as RNA-seq are increasingly popular, we offer a critical review of the data generated over the last decade relating to microarrays for gene expression profiling of the inner ear. Moreover, as most of the published data is available through the gene expression omnibus (GEO), we demonstrate the feasibility of integrating data from independent experiments to reach novel insights.


The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites.

  • Mathias Jenal‎ et al.
  • Cell‎
  • 2012‎

Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA.


Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis.

  • Ran Elkon‎ et al.
  • Genome biology‎
  • 2005‎

Gene-expression microarrays and RNA interferences (RNAi) are among the most prominent techniques in functional genomics. The combination of the two holds promise for systematic, large-scale dissection of transcriptional networks. Recent studies, however, raise the concern that nonspecific responses to small interfering RNAs (siRNAs) might obscure the consequences of silencing the gene of interest, throwing into question the ability of this experimental strategy to achieve precise network dissections.


Removal of AU bias from microarray mRNA expression data enhances computational identification of active microRNAs.

  • Ran Elkon‎ et al.
  • PLoS computational biology‎
  • 2008‎

Elucidation of regulatory roles played by microRNAs (miRs) in various biological networks is one of the greatest challenges of present molecular and computational biology. The integrated analysis of gene expression data and 3'-UTR sequences holds great promise for being an effective means to systematically delineate active miRs in different biological processes. Applying such an integrated analysis, we uncovered a striking relationship between 3'-UTR AU content and gene response in numerous microarray datasets. We show that this relationship is secondary to a general bias that links gene response and probe AU content and reflects the fact that in the majority of current arrays probes are selected from target transcript 3'-UTRs. Therefore, removal of this bias, which is in order in any analysis of microarray datasets, is of crucial importance when integrating expression data and 3'-UTR sequences to identify regulatory elements embedded in this region. We developed visualization and normalization schemes for the detection and removal of such AU biases and demonstrate that their application to microarray data significantly enhances the computational identification of active miRs. Our results substantiate that, after removal of AU biases, mRNA expression profiles contain ample information which allows in silico detection of miRs that are active in physiological conditions.


Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

  • Ranen Aviner‎ et al.
  • Nucleic acids research‎
  • 2017‎

Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase.


Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation.

  • Boris Slobodin‎ et al.
  • Cell‎
  • 2017‎

Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.


Alternative cleavage and polyadenylation generates downstream uncapped RNA isoforms with translation potential.

  • Yuval Malka‎ et al.
  • Molecular cell‎
  • 2022‎

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis.

  • Li Li‎ et al.
  • Genome biology‎
  • 2021‎

Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions.


Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data.

  • Eldad David Shulman‎ et al.
  • Nucleic acids research‎
  • 2019‎

Alternative polyadenylation (APA) is emerging as an important layer of gene regulation because the majority of mammalian protein-coding genes contain multiple polyadenylation (pA) sites in their 3' UTR. By alteration of 3' UTR length, APA can considerably affect post-transcriptional gene regulation. Yet, our understanding of APA remains rudimentary. Novel single-cell RNA sequencing (scRNA-seq) techniques allow molecular characterization of different cell types to an unprecedented degree. Notably, the most popular scRNA-seq protocols specifically sequence the 3' end of transcripts. Building on this property, we implemented a method for analysing patterns of APA regulation from such data. Analyzing multiple datasets from diverse tissues, we identified widespread modulation of APA in different cell types resulting in global 3' UTR shortening/lengthening and enhanced cleavage at intronic pA sites. Our results provide a proof-of-concept demonstration that the huge volume of scRNA-seq data that accumulates in the public domain offers a unique resource for the exploration of APA based on a very broad collection of cell types and biological conditions.


A CRISPR knockout screen reveals new regulators of canonical Wnt signaling.

  • Tamar Evron‎ et al.
  • Oncogenesis‎
  • 2021‎

The Wnt signaling pathways play fundamental roles during both development and adult homeostasis. Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer, and is especially implicated in the development and progression of colorectal cancer. Although extensively studied, new genes, mechanisms and regulatory modulators involved in Wnt signaling activation or silencing are still being discovered. Here we applied a genome-scale CRISPR-Cas9 knockout (KO) screen based on Wnt signaling induced cell survival to reveal new inhibitors of the oncogenic, canonical Wnt pathway. We have identified several potential Wnt signaling inhibitors and have characterized the effects of the initiation factor DExH-box protein 29 (DHX29) on the Wnt cascade. We show that KO of DHX29 activates the Wnt pathway leading to upregulation of the Wnt target gene cyclin-D1, while overexpression of DHX29 inhibits the pathway. Together, our data indicate that DHX29 may function as a new canonical Wnt signaling tumor suppressor and demonstrates that this screening approach can be used as a strategy for rapid identification of novel Wnt signaling modulators.


SWI/SNF complexes are required for retinal pigmented epithelium differentiation and for the inhibition of cell proliferation and neural differentiation programs.

  • Shai Ovadia‎ et al.
  • Development (Cambridge, England)‎
  • 2023‎

During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.


Helios is a key transcriptional regulator of outer hair cell maturation.

  • Lauren Chessum‎ et al.
  • Nature‎
  • 2018‎

The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.


Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair.

  • Michal Gavish-Izakson‎ et al.
  • Nucleic acids research‎
  • 2018‎

The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR.


FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer-promoter map.

  • Tom Aharon Hait‎ et al.
  • Genome biology‎
  • 2018‎

Recent sequencing technologies enable joint quantification of promoters and their enhancer regions, allowing inference of enhancer-promoter links. We show that current enhancer-promoter inference methods produce a high rate of false positive links. We introduce FOCS, a new inference method, and by benchmarking against ChIA-PET, HiChIP, and eQTL data show that it results in lower false discovery rates and at the same time higher inference power. By applying FOCS to 2630 samples taken from ENCODE, Roadmap Epigenomics, FANTOM5, and a new compendium of GRO-seq samples, we provide extensive enhancer-promotor maps ( http://acgt.cs.tau.ac.il/focs ). We illustrate the usability of our maps for deriving biological hypotheses.


Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence.

  • Ruiqi Han‎ et al.
  • Genome biology‎
  • 2018‎

Functional characterization of non-coding elements in the human genome is a major genomic challenge and the maturation of genome-editing technologies is revolutionizing our ability to achieve this task. Oncogene-induced senescence, a cellular state of irreversible proliferation arrest that is enforced following excessive oncogenic activity, is a major barrier against cancer transformation; therefore, bypassing oncogene-induced senescence is a critical step in tumorigenesis. Here, we aim at further identification of enhancer elements that are required for the establishment of this state.


E2F mediates enhanced alternative polyadenylation in proliferation.

  • Ran Elkon‎ et al.
  • Genome biology‎
  • 2012‎

The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown.


Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade.

  • Gal Ophir‎ et al.
  • Neurobiology of disease‎
  • 2005‎

Apolipoprotein E4 (apoE4), the major genetic risk factor of Alzheimer's disease (AD), is associated with enhanced brain inflammation. Genome-wide gene expression profiling was employed to study the effects of apoE genotype on hippocampal gene expression in LPS-treated mice, transgenic for either apoE4 or the AD benign allele, apoE3. This revealed that the expression of inflammation-related genes following intracerebroventricular injection of LPS was significantly higher and more prolonged in apoE4 than in apoE3 transgenic mice. Clustering analysis revealed gene clusters which responded differently in apoE4 and apoE3 mice and were significantly enriched in NF-kappaB response elements. Direct measurement of NF-kappaB-regulated genes revealed that their extent of activation was greater in the apoE4 mice. Immunohistochemistry experiments revealed that microglial and NF-kappaB activation were more pronounced in apoE4 than in apoE3 mice. These findings suggest that the increased brain inflammation in apoE4 mice is related to disregulation of NF-kappaB signaling pathway.


Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals.

  • Eldad David Shulman‎ et al.
  • PLoS genetics‎
  • 2020‎

Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3'UTRs. By generating isoforms with different 3'UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3'UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3'UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3'UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3'UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3'UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3'UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: