Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Establishment of a human DOA 'plus' iPSC line, IISHDOi003-A, with the mutation in the OPA1 gene: c.1635C>A; p.Ser545Arg.

  • Francisco Zurita-Díaz‎ et al.
  • Stem cell research‎
  • 2017‎

We have generated a human iPSC line IISHDOi003-A from fibroblasts of a patient with a dominant optic atrophy 'plus' phenotype, harbouring a heterozygous mutation, c.1635C>A; p.Ser545Arg, in the OPA1 gene. Reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


Modeling pathogenic mutations of human twinkle in Drosophila suggests an apoptosis role in response to mitochondrial defects.

  • Alvaro Sanchez-Martinez‎ et al.
  • PloS one‎
  • 2012‎

The human gene C10orf2 encodes the mitochondrial replicative DNA helicase Twinkle, mutations of which are responsible for a significant fraction of cases of autosomal dominant progressive external ophthalmoplegia (adPEO), a human mitochondrial disease caused by defects in intergenomic communication. We report the analysis of orthologous mutations in the Drosophila melanogaster mitochondrial DNA (mtDNA) helicase gene, d-mtDNA helicase. Increased expression of wild type d-mtDNA helicase using the UAS-GAL4 system leads to an increase in mtDNA copy number throughout adult life without any noteworthy phenotype, whereas overexpression of d-mtDNA helicase containing the K388A mutation in the helicase active site results in a severe depletion of mtDNA and a lethal phenotype. Overexpression of two d-mtDNA helicase variants equivalent to two human adPEO mutations shows differential effects. The A442P mutation exhibits a dominant negative effect similar to that of the active site mutant. In contrast, overexpression of d-mtDNA helicase containing the W441C mutation results in a slight decrease in mtDNA copy number during the third instar larval stage, and a moderate decrease in life span in the adult population. Overexpression of d-mtDNA helicase containing either the K388A or A442P mutations causes a mitochondrial oxidative phosphorylation (OXPHOS) defect that significantly reduces cell proliferation. The mitochondrial impairment caused by these mutations promotes apoptosis, arguing that mitochondria regulate programmed cell death in Drosophila. Our study of d-mtDNA helicase overexpression provides a tractable Drosophila model for understanding the cellular and molecular effects of human adPEO mutations.


Establishment of a human iPSC line (IISHDOi001-A) from a patient with McArdle disease.

  • María Del Carmen Ortuño-Costela‎ et al.
  • Stem cell research‎
  • 2017‎

Human iPSC line IISHDOi001-A was generated from fibroblasts of a patient with McArdle disease harbouring the mutation, c.148C>T; p.Arg50Ter, in the PYGM gene. Reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


The thyroid hormone receptor β induces DNA damage and premature senescence.

  • Alberto Zambrano‎ et al.
  • The Journal of cell biology‎
  • 2014‎

There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.


Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder.

  • Marisa W Friederich‎ et al.
  • Nature communications‎
  • 2018‎

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Establishment of a human iPSC line, IISHDOi004-A, from a patient with Usher syndrome associated with the mutation c.2276G>T; p.Cys759Phe in the USH2A gene.

  • Francisco Zurita-Díaz‎ et al.
  • Stem cell research‎
  • 2018‎

A human iPSC line, IISHDOi004-A, from fibroblasts obtained from a patient with Usher syndrome, harboring a homozygous mutation in the USH2A gene (c.2276G>T; p.Cys759Phe) has been generated. Reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


Drosophila nuclear factor DREF regulates the expression of the mitochondrial DNA helicase and mitochondrial transcription factor B2 but not the mitochondrial translation factor B1.

  • Miguel A Fernández-Moreno‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila.


Derivation of an aged mouse induced pluripotent stem cell line, IISHDOi005-A.

  • María Del Carmen Ortuño-Costela‎ et al.
  • Stem cell research‎
  • 2019‎

A mouse iPSC line, IISHDOi005-A, generated from fibroblasts obtained from a mouse C57BL/6J with an age of 1 year and a half, has been obtained. For this purpose, reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


Generation of a human iPSC line, IISHDOi002-A, with a 46, XY/47, XYY mosaicism and belonging to an African mitochondrial haplogroup.

  • María Del Carmen Ortuño-Costela‎ et al.
  • Stem cell research‎
  • 2018‎

We have generated a human iPSC line, IISHDOi002-A, from commercial primary normal human dermal fibroblasts belonging to an African mitochondrial haplogroup (L3), and with a 46, XY/47, XYY mosaicism. For this purpose, reprogramming factors Oct3/4, Sox2, Klf4 and cMyc were delivered using a non-integrative methodology that involves the use of Sendai virus.


Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons.

  • Teresa Galera-Monge‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Leigh syndrome (LS) is the most frequent infantile mitochondrial disorder (MD) and is characterized by neurodegeneration and astrogliosis in the basal ganglia or the brain stem. At present, there is no cure or treatment for this disease, partly due to scarcity of LS models. Current models generally fail to recapitulate important traits of the disease. Therefore, there is an urgent need to develop new human in vitro models. Establishment of induced pluripotent stem cells (iPSCs) followed by differentiation into neurons is a powerful tool to obtain an in vitro model for LS. Here, we describe the generation and characterization of iPSCs, neural stem cells (NSCs) and iPSC-derived neurons harboring the mtDNA mutation m.13513G>A in heteroplasmy. We have performed mitochondrial characterization, analysis of electrophysiological properties and calcium imaging of LS neurons. Here, we show a clearly compromised oxidative phosphorylation (OXPHOS) function in LS patient neurons. This is also the first report of electrophysiological studies performed on iPSC-derived neurons harboring an mtDNA mutation, which revealed that, in spite of having identical electrical properties, diseased neurons manifested mitochondrial dysfunction together with a diminished calcium buffering capacity. This could lead to an overload of cytoplasmic calcium concentration and the consequent cell death observed in patients. Importantly, our results highlight the importance of calcium homeostasis in LS pathology.


Enhanced tumorigenicity by mitochondrial DNA mild mutations.

  • Alberto Cruz-Bermúdez‎ et al.
  • Oncotarget‎
  • 2015‎

To understand how mitochondria are involved in malignant transformation we have generated a collection of transmitochondrial cybrid cell lines on the same nuclear background (143B) but with mutant mitochondrial DNA (mtDNA) variants with different degrees of pathogenicity. These include the severe mutation in the tRNALys gene, m.8363G>A, and the three milder yet prevalent Leber's hereditary optic neuropathy (LHON) mutations in the MT-ND1 (m.3460G>A), MT-ND4 (m.11778G>A) and MT-ND6 (m.14484T>C) mitochondrial genes. We found that 143B ρ0 cells devoid of mtDNA and cybrids harboring wild type mtDNA or that causing severe mitochondrial dysfunction do not produce tumors when injected in nude mice. By contrast cybrids containing mild mutant mtDNAs exhibit different tumorigenic capacities, depending on OXPHOS dysfunction.The differences in tumorigenicity correlate with an enhanced resistance to apoptosis and high levels of NOX expression. However, the final capacity of the different cybrid cell lines to generate tumors is most likely a consequence of a complex array of pro-oncogenic and anti-oncogenic factors associated with mitochondrial dysfunction.Our results demonstrate the essential role of mtDNA in tumorigenesis and explain the numerous and varied mtDNA mutations found in human tumors, most of which give rise to mild mitochondrial dysfunction.


Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines.

  • Mercedes Fernández-Moreno‎ et al.
  • PloS one‎
  • 2016‎

The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr.


Co-occurrence of four nucleotide changes associated with an adult mitochondrial ataxia phenotype.

  • Ramón Zabalza‎ et al.
  • BMC research notes‎
  • 2014‎

Mitochondrial DNA maintenance disorders are an important cause of hereditary ataxia syndrome, and the majority are associated with mutations in the gene encoding the catalytic subunit of the mitochondrial DNA polymerase (DNA polymerase gamma), POLG. Mutations resulting in the amino acid substitutions A467T and W748S are the most common genetic causes of inherited cerebellar ataxia in Europe.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: