Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Up-regulation of the Cdc42 GTPase limits the replicative life span of budding yeast.

  • Pil Jung Kang‎ et al.
  • Molecular biology of the cell‎
  • 2022‎

Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.


Cdc42 couples septin recruitment to the axial landmark assembly via Axl2 in budding yeast.

  • Pil Jung Kang‎ et al.
  • Journal of cell science‎
  • 2024‎

Cell polarization generally occurs along a single axis that is directed by a spatial cue. Cells of the budding yeast Saccharomyces cerevisiae undergo polarized growth and oriented cell division in a spatial pattern by selecting a specific bud site. Haploid a or α cells bud in the axial pattern in response to a transient landmark that includes Bud3, Bud4, Axl1 and Axl2. Septins, a family of filament-forming GTP-binding proteins, are also involved in axial budding and are recruited to an incipient bud site, but the mechanism of recruitment remains unclear. Here, we show that Axl2 interacts with Bud3 and the Cdc42 GTPase in its GTP-bound state. Axl2 also interacts with Cdc10, a septin subunit, promoting efficient recruitment of septins near the cell division site. Furthermore, a cdc42 mutant defective in the axial budding pattern at a semi-permissive temperature had a reduced interaction with Axl2 and compromised septin recruitment in the G1 phase. We thus propose that active Cdc42 brings Axl2 to the Bud3-Bud4 complex and that Axl2 then interacts with Cdc10, linking septin recruitment to the axial landmark.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: