Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Effect of tart cherry juice on recovery and next day performance in well-trained Water Polo players.

  • Rachel McCormick‎ et al.
  • Journal of the International Society of Sports Nutrition‎
  • 2016‎

Tart Montmorency cherries contain high concentrations of phytochemicals and anthocyanins, which have recently been linked to improved athletic recovery and subsequent performance. To date however, previous work reporting promising results has focused on land-based endurance sports, with any potential benefits to team sports remaining unknown. As such, this investigation set-out to examine the effect of supplemental tart cherry juice (CJ) on recovery and next day athletic performance in highly-trained water-based team sport athletes over seven days.


Identification of a novel loss-of-function PHEX mutation, Ala720Ser, in a sporadic case of adult-onset hypophosphatemic osteomalacia.

  • Katarzyna Goljanek-Whysall‎ et al.
  • Bone‎
  • 2018‎

Adults presenting with sporadic hypophosphatemia and elevations in circulating fibroblast growth factor-23 (FGF23) concentrations are usually investigated for an acquired disorder of FGF23 excess such as tumor induced osteomalacia (TIO). However, in some cases the underlying tumor is not detected, and such patients may harbor other causes of FGF23 excess. Indeed, coding-region and 3'UTR mutations of phosphate-regulating neutral endopeptidase (PHEX), which encodes a cell-surface protein that regulates circulating FGF23 concentrations, can lead to alterations in phosphate homeostasis, which are not detected until adulthood. Here, we report an adult female who presented with hypophosphatemic osteomalacia and raised serum FGF23 concentrations. The patient and her parents, who were her only first-degree relatives, had no history of rickets. The patient was thus suspected of having TIO. However, no tumor had been identified following extensive localization studies. Mutational analysis of the PHEX coding-region and 3'UTR was undertaken, and this revealed the patient to be heterozygous for a novel germline PHEX mutation (c.2158G>T; p.Ala720Ser). In vitro studies involving the expression of WT and mutant PHEX proteins in HEK293 cells demonstrated the Ala720Ser mutation to impair trafficking of PHEX, with ~20% of the mutant protein being expressed at the cell surface, compared to ~80% cell surface expression for WT PHEX (p<0.05). Thus, our studies have identified a pathogenic PHEX mutation in a sporadic case of adult-onset hypophosphatemic osteomalacia, and these findings highlight a role for PHEX gene analysis in some cases of suspected TIO, particularly when no tumor has been identified.


Optimisation of a Novel Bio-Substrate as a Treatment for Atrophic Age-Related Macular Degeneration.

  • Rachel McCormick‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Atrophic age-related macular degeneration (AMD) is the most common form of AMD accounting for 90% of patients. During atrophic AMD the waste/exchange pathway between the blood supply (choroid) and the retinal pigment epithelium (RPE) is compromised. This results in atrophy and death of the RPE cells and subsequently the photoreceptors leading to central blindness. Although the mechanisms behind AMD are unknown, the growth of fatty deposits known as drusen, have been shown to play a role in the disease. There is currently no treatment or cure for atrophic AMD. Much research focuses on developing a synthetic substrate in order to transplant healthy cells to the native Bruch's membrane (BM), however, the diseased native BM and related structures still leave potential for transplanted cells to succumb to disease. In this proof-of-concept work we electrospun poly(ethylene terephthalate) (PET) to fabricate a nanofibrous cytocompatible synthetic BM. The apical surface of the membrane was cultured with ARPE-19 cells and the underside was decorated with poly(lactic acid-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) degradable nanoparticles by electrospraying. The membrane exhibited hydrophilicity, high tensile strength and structurally resembled the native BM. ARPE-19 cells were able to form a monolayer on the surface of the membrane and no cell invasion into the membrane was seen. The presence of both PLGA and PGA nanoparticles increased ARPE-19 cell metabolism but had no effect on cell viability. There was a decrease in pH of ARPE-19 cell culture media 7 days following culturing with the PLGA nanoparticles but this change was eliminated by 2 weeks; PGA nanoparticles had no effect on cell culture media pH. The fluorescent dye FITC was encapsulated into nanoparticles and showed sustained release from PLGA nanoparticles for 2 weeks and PGA nanoparticles for 1 day. Future work will focus on encapsulating biologically active moieties to target drusen. This could allow this novel bioactive substrate to be a potential treatment for atrophic AMD that would function two-fold: deliver the required monolayer of healthy RPE cells to the macula on a synthetic BM and remove diseased structures within the retina, restoring the waste/exchange pathway and preventing vision loss.


Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.

  • Ana Soriano-Arroquia‎ et al.
  • Aging cell‎
  • 2016‎

A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age-related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA-143-3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR-143 as a regulator of the insulin growth factor-binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR-143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR-143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR-143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR-143-3p:Igfbp5 interactions in satellite cells with age may be responsible for age-related changes in satellite cell function.


Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic Escherichia coli O157:H7 from the Canadian perspective.

  • Jillian Rumore‎ et al.
  • BMC genomics‎
  • 2018‎

Rapid and accurate identification of Verotoxigenic Escherichia coli (VTEC) O157:H7 is dependent on well-established, standardized and highly discriminatory typing methods. Currently, conventional subtyping tests for foodborne bacterial pathogen surveillance are rapidly being replaced with whole-genome sequencing (WGS) in public health laboratories. The capacity of WGS to revolutionize global foodborne disease surveillance has positioned this tool to become the new gold standard; however, to ensure evidence standards for public health decision making can still be achieved, the performance of WGS must be thoroughly validated against current gold standard methods prior to implementation. Here we aim to verify the performance of WGS in comparison to pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA) for eight retrospective outbreaks of VTEC O157:H7 from the Canadian perspective. Since real-time implementation and routine use of WGS in public health laboratories is highly reliant on standardized data analysis tools, we also provide a comparative analysis of two popular methodologies for WGS analyses; an in-house developed single nucleotide variant phylogenomics (SNVPhyl) pipeline and the BioNumerics whole genome multilocus sequence typing (wgMLST) tool. To provide a useful and consistent starting point for examining laboratory-based surveillance data for VTEC O157:H7 in Canada, we also aim to describe the number of genetic differences observed among outbreak-associated isolates.


miR-181a regulates p62/SQSTM1, parkin, and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging.

  • Katarzyna Goljanek-Whysall‎ et al.
  • Aging cell‎
  • 2020‎

One of the key mechanisms underlying skeletal muscle functional deterioration during aging is disrupted mitochondrial dynamics. Regulation of mitochondrial dynamics is essential to maintain a healthy mitochondrial population and prevent the accumulation of damaged mitochondria; however, the regulatory mechanisms are poorly understood. We demonstrated loss of mitochondrial content and disrupted mitochondrial dynamics in muscle during aging concomitant with dysregulation of miR-181a target interactions. Using functional approaches and mito-QC assay, we have established that miR-181a is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1, and DJ-1 in vitro. Downregulation of miR-181a with age was associated with an accumulation of autophagy-related proteins and abnormal mitochondria. Restoring miR-181a levels in old mice prevented accumulation of p62, DJ-1, and PARK2, and improved mitochondrial quality and muscle function. These results provide physiological evidence for the potential of microRNA-based interventions for age-related muscle atrophy and of wider significance for diseases with disrupted mitochondrial dynamics.


miR-24 and its target gene Prdx6 regulate viability and senescence of myogenic progenitors during aging.

  • Ana Soriano-Arroquia‎ et al.
  • Aging cell‎
  • 2021‎

Satellite cell-dependent skeletal muscle regeneration declines during aging. Disruptions within the satellite cells and their niche, together with alterations in the myofibrillar environment, contribute to age-related dysfunction and defective muscle regeneration. In this study, we demonstrated an age-related decline in satellite cell viability and myogenic potential and an increase in ROS and cellular senescence. We detected a transient upregulation of miR-24 in regenerating muscle from adult mice and downregulation of miR-24 during muscle regeneration in old mice. FACS-sorted satellite cells were characterized by decreased levels of miR-24 and a concomitant increase in expression of its target: Prdx6. Using GFP reporter constructs, we demonstrated that miR-24 directly binds to its predicted site within Prdx6 mRNA. Subtle changes in Prdx6 levels following changes in miR-24 expression indicate miR-24 plays a role in fine-tuning Prdx6 expression. Changes in miR-24 and Prdx6 levels were associated with altered mitochondrial ROS generation, increase in the DNA damage marker: phosphorylated-H2Ax and changes in viability, senescence, and myogenic potential of myogenic progenitors from mice and humans. The effects of miR-24 were more pronounced in myogenic progenitors from old mice, suggesting a context-dependent role of miR-24 in these cells, with miR-24 downregulation likely a part of a compensatory response to declining satellite cell function during aging. We propose that downregulation of miR-24 and subsequent upregulation of Prdx6 in muscle of old mice following injury are an adaptive response to aging, to maintain satellite cell viability and myogenic potential through regulation of mitochondrial ROS and DNA damage pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: