Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Increased Salivary microRNAs That Regulate DJ-1 Gene Expression as Potential Markers for Parkinson's Disease.

  • Yanmei Chen‎ et al.
  • Frontiers in aging neuroscience‎
  • 2020‎

Small molecule RNAs (microRNAs) are a kind of endogenous, stable, and noncoding RNA molecule that can regulate the expression of target genes such as DJ-1 at the posttranscriptional level. This study aimed to detect the expression of salivary microRNAs and to discover their value as a salivary potential biomarker for Parkinson's disease (PD). Through a case-control study, RT-qPCR technology was used to detect the expression of miR-874 and miR-145-3p in the saliva of 30 PD patients and 30 healthy volunteers. Then we compared the differences in the expression levels of salivary miR-874 and miR-145-3p between the PD group and the control group and analyzed the correlation between the expression of salivary miR-874 and miR-145-3p in terms of age, gender, disease condition, and disease course. We found that salivary miR-874 and miR-145-3p were both positively expressed in the PD group and control group, and their expression in the PD group was higher than that in the control group. The expression of salivary miRNA-874 and miR-145-3p had no clear correlation to age, gender, total RNA concentrations in saliva, the score of UPDRSII, UPDRSIII, olfactory test scale, MMSE, MoCA, Hohn-Yahr stage and disease course. In conclusion, in the PD group and the control group with positive expression, the expression levels of miR-874 and miR-145-3p in the PD group were higher than those in the control group. The detection of miR-874 and miR-145-3p expression in saliva can be used as an auxiliary biomarker for PD.


A Moderate Duration of Stress Promotes Behavioral Adaptation and Spatial Memory in Young C57BL/6J Mice.

  • Lanyan Lin‎ et al.
  • Brain sciences‎
  • 2022‎

Stress may serve multiple roles in cerebral functioning, ranging from a highly appropriate behavioral adaptation to a critical risk factor for susceptibility to mood disorder and cognitive impairment. It is well known that E/I (excitation/inhibition) balance is essential for maintaining brain homeostasis. However, it remains largely unknown how GABAergic and Glutamatergic neurons respond to different stressful stimuli and whether the GABAergic-Glutamatergic neuron balance is related to the transition between adaptive and maladaptive behaviors. Here, we subjected 3-month-old mice to chronic mild stress (CMS) for a period of one, two, and four weeks, respectively. The results showed that the two-week CMS procedure produced adaptive effects on behaviors and cognitive performance, with a higher number of GABAergic neuron and VGluT1-positive neurons, increasing the expressions of p-GluN2B, Reelin, and syn-PSD-95 protein in the hippocampus. In contrast, the prolonged behavioral challenge (4 week) imposes a passive coping behavioral strategy and cognitive impairment, decreased the number of GABAergic neuron, hyperactivity of VGluT1-positive neuron, increased the ratio of p-GluN2B, and decreased the expression of Reelin, syn-PSD-95 in the hippocampus. These findings suggest that a moderate duration of stress probably promotes behavioral adaptation and spatial memory by maintaining a GABAergic-Glutamatergic neuron balance and promoting the expression of synaptic plasticity-related proteins in the brain.


Comparative Efficacy and Safety of Dopamine Agonists in Advanced Parkinson's Disease With Motor Fluctuations: A Systematic Review and Network Meta-Analysis of Double-Blind Randomized Controlled Trials.

  • Xinglin Ruan‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Background: Movement fluctuations are the main complication of Parkinson's disease (PD) patients receiving long-term levodopa (L-dopa) treatment. We compared and ranked the efficacy and safety of dopamine agonists (DAs) with regard to motor fluctuations by using a Bayesian network meta-analysis (NMA) to quantify information from randomized controlled trials (RCTs). Methods and Findings: We carried out a systematic review and meta-analysis, and only RCTs comparing DAs for advanced PD were included. Electronic databases (PubMed, Embase, and Cochrane Library) were systematically searched for relevant studies published until January 2021. Two reviewers independently extracted individual study data and evaluated studies for risk of bias using the Cochrane Risk of Bias tool. Network meta-analyses using a Bayesian framework were used to calculate the related parameters. The pre-specified primary and secondary outcomes were efficacy ("ON" time without troublesome dyskinesia, "OFF" time, "ON" time, "UPDRS-III," and "UPDRS-II") and safety [treatment-emergent adverse events (TEAE) and other adverse events] of DAs. The results are presented as the surface under the cumulative ranking (SUCRA) curve. A total of 20 RCTs assessing 6,560 patients were included. The general DA effects were ranked from high to low with respect to the amount of "ON" time without troublesome dyskinesia as follows: apomorphine (SUCRA = 97.08%), pramipexole_IR (probability = 79.00%), and ropinirole_PR (SUCRA = 63.92%). The general safety of DAs was ranked from high to low with respect to TEAE as follows: placebo (SUCRA = 74.49%), pramipexole_ER (SUCRA = 63.6%), sumanirole (SUCRA = 54.07%), and rotigotine (SUCRA = 53.84%). Conclusions: This network meta-analysis shows that apomorphine increased "ON" time without troublesome dyskinesia and decreased "OF" time for advanced PD patients. The addition of pramipexole, ropinirole, or rotigotine to levodopa treatment in advanced PD patients with motor fluctuations increased "ON" time without troublesome dyskinesia, improved the UPDRS III scores, and ultimately ameliorated the UPDRS II scores, thereby maximizing its benefit. This NMA of pramipexole, ropinirole, and rotigotine represents an effective treatment option and has an acceptable safety profile in patients with advanced PD.


Rosmarinic Acid Inhibits Mitochondrial Damage by Alleviating Unfolded Protein Response.

  • Guoen Cai‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Mitochondria are essential organelles that perform important roles in cell biologies such as ATP synthesis, metabolic regulation, immunomodulatory, and apoptosis. Parkinson's disease (PD) is connected with mitochondrial neuronal damage related to mitochondrial unfolded protein response (mtUPR). Rosmarinic acid (RA) is a naturally occurring hydroxylated polyphenolic chemical found in the Boraginaceae and the Labiatae subfamily Nepetoideae. This study looked into RA's protective effect against mitochondrial loss in the substantia nigra (SN) caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the underlying mechanism associated with the mtUPR. Pretreatment with RA reduced motor impairments and dopaminergic neuronal degeneration in the SN of a mouse model injected with MPTP. Pretreatment of SH-SY5Y cells from cell viability loss, morphological damage, and oxidative stress. Furthermore, RA pre-injection suppressed MPTP-induced mtUPR, lowered the expression of HSPA9, HSPE1, CLPP, LONP1, and SIRT 4, and protected the MPTP-mice and SH-SY5Y cells from mitochondrial failure. These findings imply that RA can prevent Parkinson's disease by preventing mitochondrial damage in dopaminergic neurons in Parkinson's disease via alleviating mitochondrial unfolded protein response.


The treatment efficacy of pharmacotherapies for rapid eye movement sleep behavior disorder with polysomnography evaluation: A systematic review and meta-analysis.

  • Zhiqiang Que‎ et al.
  • Heliyon‎
  • 2022‎

Clonazepam and melatonin are commonly used as first-line medications for the treatment of rapid eye movement (REM) sleep behavior disorder (RBD), with other medications used in the clinic including pramipexole, ramelteon, and rotigotine. We performed a systematic review and meta-analysis of randomized and non-randomized controlled trials to assess the efficacy of these treatment options in RBD patients with polysomnography. We systematically retrieved results of randomized and non-randomized controlled trials using the PubMed, Embase, and Cochrane databases. Of the 454 studies identified, 13 were considered eligible for inclusion in the study. In comparison to baseline, clonazepam was found to significantly decrease the percentage of stage 2 sleep [4.00 (95% CI = 0.90 to 7.10)] in RBD patients. Melatonin was found to significantly improve patients' sleep efficiency [2.51(95% CI = 0.75 to 4.28)], significantly reduce the time spent in bed (TIB) [-11.71(95% CI = -23.05 to -0.37)], phasic activity[-25.79(95% CI = -42.13 to -9.46)] and tonic activity[-10.44(95% CI = -12.24 to -8.64)]. RWA[-5.87 (95% CI = -8.25 to -3.50)] significantly improve with the use of ramelteon. Pramipexole was found to significantly increase the total sleep time (TST) [27.17 (95% CI = 0.06 to 54.29)], and significantly reduce the periodic limb movements of sleep (PLMS) index [-11.42(95% CI = -21.38 to -1.47)]. We also found that pramipexole had different effects on idiopathic RBD (iRBD) and secondary RBD (sRBD). These results will help to guide the clinical use of medication in patients with RBD.


ApoE4 exacerbates the senescence of hippocampal neurons and spatial cognitive impairment by downregulating acetyl-CoA level.

  • Shuixin Lv‎ et al.
  • Aging cell‎
  • 2023‎

Although aging and apolipoprotein E (APOE) ε4 allele have been documented as two major risk factors for late-onset Alzheimer's disease (LOAD), their interaction and potential underlying mechanisms remain unelucidated. Using humanized ApoE4- and ApoE3- target replacement mice, we found the accumulation of senescent neurons and the activation of mTOR and endosome-lysosome-autophagy (ELA) system in the hippocampus of aged ApoE4 mice. Further analyses revealed that ApoE4 aggravated the profile change of hippocampal transcription and metabolism in an age-dependent manner, accompanying with an disruption of metabolism, which is presented with the downregulating activity of citrate synthase, the level of ATP and, most importantly, the level of acetyl coenzyme A (Ac-CoA); GTA supplement, an Ac-CoA substrate, reversed the senescent characteristics, decreased the activation of mTOR and ELA system, and enhanced the synaptic structure and increasing level of pre-/post-synaptic plasticity-related protein, leading to cognitive improvement in aged ApoE4 mice. These data suggest that ApoE4 exacerbates neuronal senescence due to a deficiency of acetyl-CoA, which can be ameliorated by GTA supplement. The findings provide novel insights into the potential therapeutic value of GTA supplement for the cognitive improvement in aged APOE4 carriers.


Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells.

  • Qinyong Ye‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

The dopaminergic neuron degeneration and loss that occurs in Parkinson's disease (PD) has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. We utilized RNA interference (RNAi) technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c) to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ)) also decreased. Our finding indicates that small interfering RNA (siRNA) interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD.


Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis.

  • Qinyong Ye‎ et al.
  • BMC neuroscience‎
  • 2012‎

Although the etiology of PD remains unclear, increasing evidence has shown that oxidative stress plays an important role in its pathogenesis and that of other neurodegenerative disorders. NOX2, a cytochrome subunit of NOX, transports electrons across the plasma membrane to generate ROS, leading to physiological and pathological processes. Heme oxygenase-1 (HO-1) can be rapidly induced by oxidative stress and other noxious stimuli in the brain or other tissues. Astaxanthin (ATX), a carotenoid with antioxidant properties, is 100-1000 times more effective than vitamin E. The present study investigated the neuroprotective effects of ATX on MPP(+)-induced oxidative stress in PC12 cells.


Astaxanthin suppresses MPP(+)-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway.

  • Qinyong Ye‎ et al.
  • Marine drugs‎
  • 2013‎

To investigate astaxanthin (ATX) neuroprotection, and its mechanism, on a 1-methyl-4-phenyl-pyridine ion (MPP+)-induced cell model of Parkinson's disease.


Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway.

  • Qinyong Ye‎ et al.
  • BMC complementary and alternative medicine‎
  • 2012‎

Parkinson's disease is a high incidence neurodegenerative disease in elderly people, and oxidative stress plays an important role in the pathogenesis. Oxygen metabolism in the brain is high, which lacks an antioxidative protection mechanism. Recently, it has been found that polyphenols play an important role in antioxidation. (-)-epigallocatechin-3-gallate (EGCG) is an important component of tea polyphenols and its biological effects, such as strong antioxidation, scavenging of free radicals and anti-apoptosis, can pass through the blood brain barrier. The SIRT1/PGC-1α signaling pathway has not been reported in PC12 cells. Therefore, research of the protective mechanism of EGCG in PC12 cells damaged by -methyl-4-phenyl-pyridine (MMP+) may provide a new insight into protect against and treatment of Parkinson's disease.


Increased Notch2/NF-κB Signaling May Mediate the Depression Susceptibility: Evidence from Chronic Social Defeat Stress Mice and WKY Rats.

  • Jiangfeng Liao‎ et al.
  • Physiology & behavior‎
  • 2021‎

The susceptibility to depression has been attributed to the chronic stress and genetic factors but still fails to identify definite biomarkers. The present study aimed to investigate the role of disrupted Notch signaling in the medial prefrontal cortex of the chronic social defeat stress (CSDS) mice and Wistar Kyoto (WKY) rats. RNA-sequencing and quantitative real-time PCR analyses evidenced the involvement of Notch signaling pathway in depression. Western blotting reported an increased level of Notch2 and NF-κB and a decreased level of Hes1 and Bcl2/Bax ratio both in the susceptible mice when compared with the control or resilient ones and in the depression WKY rats when compared with the Wistar or non-depression WKY groups. Further analysis showed that the above-mentioned changes were significantly correlated with the depression-like behaviors and that the elicited Notch2 strongly correlated with the upregulated NF-κB, not with the downregulated Hes1 or Bcl2/Bax ratio. In conclusion, the increased Notch2/NF-κB signaling in the medial prefrontal cortex may mediate depression susceptibility, providing a potential diagnostic biomarker or therapeutic target for treating major depressive disorder.


Overexpression of PGC-1α influences the mitochondrial unfolded protein response (mtUPR) induced by MPP+ in human SH-SY5Y neuroblastoma cells.

  • Yousheng Cai‎ et al.
  • Scientific reports‎
  • 2020‎

Parkinson's disease (PD) is a common dyskinesia disease, the mitochondrial unfolded protein response (mtUPR) may be directly or indirectly involved in the occurrence and development of PD, although the exact mechanism is unclear. We established a dopaminergic neuronal-like cell model of PD, by overexpression of PGC-1α to detect evaluate the expression of proteases and molecular chaperones of involved in the mtUPR, as well as the expression of PGC-1α and LRPPRC, illustrated the distribution of LRPPRC. Remarkably, the mtUPR activation reached maximal at 24 h after MPP+ treatment in SH-SY5Y cells, which the protein and transcription levels of the proteases and molecular chaperones reached maximal. The proteases and molecular chaperones were significantly increased when overexpressed PGC-1α, which indicated that PGC-1α overexpression activated the mtUPR, and PGC-1α had a protective effect on SH-SY5Y cells. The expression levels of PGC-1α and LRPPRC were significantly improved in the PGC-1α overexpression groups. LRPPRC was markedly reduced in the nucleus, suggesting that PGC-1α overexpression may play a protective role to the mitochondria through LRPPRC. Our finding indicates that overexpression of PGC-1α may activate mtUPR, reducing the oxidative stress injury induced by MPP+ through LRPPRC signaling, thus maintain mitochondrial homeostasis.


Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels.

  • Tianwen Huang‎ et al.
  • Aging‎
  • 2020‎

Pink1, Parkin and Fbxo7, three autosomal recessive familial genes of Parkinson's disease (PD), have been implicated in mitophagy pathways for quality control and clearance of damaged mitochondria, but the interplay of these three genes still remains unclear. Here we present that Fbxo7 and Pink1 play a reciprocal role in the regulation of their protein levels. Regardless of the genotypes of Fbxo7, the wild type and the PD familial mutants of Fbxo7 stabilize the processed form of Pink1, supporting the prior study that none of the PD familial mutations in Fbxo7 have an effect on the interaction with Pink1. On the other hand, the interaction of Fbxo7 with Bag2 further facilitates its capability to stabilize Pink1. Intriguingly, the stabilization of Fbxo7 by Pink1 is specifically observed in substantial nigra pars compacta but striatum and cerebral cortex. Taken together, our findings support the notion that Fbxo7 as a scaffold protein has a chaperon activity in the stabilization of proteins.


ACSS2-dependent histone acetylation improves cognition in mouse model of Alzheimer's disease.

  • Yingbin Lin‎ et al.
  • Molecular neurodegeneration‎
  • 2023‎

Nuclear acetyl-CoA pools govern histone acetylation that controls synaptic plasticity and contributes to cognitive deterioration in patients with Alzheimer's disease (AD). Nuclear acetyl-CoA pools are generated partially from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). However, the underlying mechanism of histone acetylation dysregulation in AD remains poorly understood.


Cortical thickness and white matter microstructure predict freezing of gait development in Parkinson's disease.

  • Fabin Lin‎ et al.
  • NPJ Parkinson's disease‎
  • 2024‎

The clinical applications of the association of cortical thickness and white matter fiber with freezing of gait (FoG) are limited in patients with Parkinson's disease (PD). In this retrospective study, using white matter fiber from diffusion-weighted imaging and cortical thickness from structural-weighted imaging of magnetic resonance imaging, we investigated whether a machine learning-based model can help assess the risk of FoG at the individual level in patients with PD. Data from the Parkinson's Disease Progression Marker Initiative database were used as the discovery cohort, whereas those from the Fujian Medical University Union Hospital Parkinson's Disease database were used as the external validation cohort. Clinical variables, white matter fiber, and cortical thickness were selected by random forest regression. The selected features were used to train the support vector machine(SVM) learning models. The median area under the receiver operating characteristic curve (AUC) was calculated. Model performance was validated using the external validation cohort. In the discovery cohort, 25 patients with PD were defined as FoG converters (15 men, mean age 62.1 years), whereas 60 were defined as FoG nonconverters (38 men, mean age 58.5 years). In the external validation cohort, 18 patients with PD were defined as FoG converters (8 men, mean age 66.9 years), whereas 37 were defined as FoG nonconverters (21 men, mean age 65.1 years). In the discovery cohort, the model trained with clinical variables, cortical thickness, and white matter fiber exhibited better performance (AUC, 0.67-0.88). More importantly, SVM-radial kernel models trained using random over-sampling examples, incorporating white matter fiber, cortical thickness, and clinical variables exhibited better performance (AUC, 0.88). This model trained using the above mentioned features was successfully validated in an external validation cohort (AUC, 0.91). Furthermore, the following minimal feature sets that were used: fractional anisotropy value and mean diffusivity value for right thalamic radiation, age at baseline, and cortical thickness for left precentral gyrus and right dorsal posterior cingulate gyrus. Therefore, machine learning-based models using white matter fiber and cortical thickness can help predict the risk of FoG conversion at the individual level in patients with PD, with improved performance when combined with clinical variables.


Regulation of PGC-1α mediated by acetylation and phosphorylation in MPP+ induced cell model of Parkinson's disease.

  • Fei Fan‎ et al.
  • Aging‎
  • 2020‎

Parkinson's disease (PD) is one of the most common neurodegenerative diseases with complex etiology in sporadic cases. Accumulating evidence suggests that oxidative stress and defects in mitochondrial dynamics are associated with the pathogenesis of PD. The oxidative stress and mitochondrial dynamics are regulated strictly by peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). We investigated whether acetylation and phosphorylation of PGC-1α contribute to protecting neuronal cell against oxidative stress.


Estradiol-induced senescence of hypothalamic astrocytes contributes to aging-related reproductive function declines in female mice.

  • Xiaoman Dai‎ et al.
  • Aging‎
  • 2020‎

Hypothalamic astrocytes are important contributors that activate gonadotropin-releasing hormone (GnRH) neurons and promote GnRH/LH (luteinizing hormone) surge. However, the potential roles and mechanisms of astrocytes during the early reproductive decline remain obscure. The current study reported that, in intact middle-aged female mice, astrocytes within the hypothalamic RP3V accumulated senescence-related markers with increasing age. It employed an ovariectomized animal model and a cell model receiving estrogen intervention to confirm the estrogen-induced senescence of hypothalamic astrocytes. It found that estrogen metabolites may be an important factor for the estrogen-induced astrocyte senescence. In vitro molecular analysis revealed that ovarian estradiol activated PKA and up-regulated CYPs expression, metabolizing estradiol into 2-OHE2 and 4-OHE2. Of note, in middle-aged mice, the progesterone synthesis and the ability to promote GnRH release were significantly reduced. Besides, the expression of growth factors decreased and the mRNA levels of proinflammatory cytokines significantly increased in the aging astrocytes. The findings confirm that ovarian estradiol induces the senescence of hypothalamic astrocytes and that the senescent astrocytes compromise the regulation of progesterone synthesis and GnRH secretion, which may contribute to the aging-related declines in female reproductive function.


Fish oil supplementation, physical activity and risk of incident Parkinson's disease: results of longitudinal analysis from the UK Biobank.

  • Fabin Lin‎ et al.
  • Frontiers in aging neuroscience‎
  • 2023‎

Evidence on the individual and combined relationship of physical activity (PA) and fish oil supplement use on the incidence of Parkinson's disease (PD) risk remains lacking.


Increase of p25 associated with cortical neuronal death induced by hypoxia.

  • Tianwen Huang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

The mechanisms of neuronal damage in hypoxic cerebral cortex are complicated. Recent studies indicated that deregulation of Cdk5 was involved in neuronal death induced by hypoxia (1% O2). However, the pathological effect of Cdk5 is not fully elucidated. Therefore, in order to decipher the effect of Cdk5 on cellular death in hypoxic condition, the Cdk5 and its activator p35/p25 were investigated in cortical neurons at 10 DIV (Days In Vitro). Upon exposure to hypoxia, the cortical neurons showed a time-dependent increase of neuronal death compared to normoxia-treated control neurons. In correlation to the increase of neuronal death under hypoxia, the level of p25, a truncated form of p35, also increased in a time-dependent manner. Importantly, inhibition of Cdk5 kinase activity by roscovitine protected neurons from death under hypoxic stress. In contrast, ectopic upregulation of Cdk5 kinase activity in neurons expressing p25 led to an increase of neuronal death in comparison to control neurons expressing GFP. It suggests that ectopic increase of Cdk5 kinase activity through conversion of p35 to p25 is involved in the process of neuronal death induced by hypoxia.


Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity.

  • Yingqing Wang‎ et al.
  • Aging‎
  • 2019‎

Mitochondrial dysfunction and oxidative stress are closely associated with the pathogenesis of Parkinson's disease. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) is thought to play multiple roles in the regulation of mitochondrial biogenesis and cellular energy metabolism. We recently reported that altering PGC-1α gene expression modulates mitochondrial functions in N-methyl-4-phenylpyridinium ion (MPP+) treated human SH-SY5Y neuroblastoma cells, possibly via the regulation of Estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2) and peroxisome proliferator-activated receptor γ (PPARγ) expression. In the present study, we aimed to further investigate the potential beneficial effects of PGC-1α in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated C57BL mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: