Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Short-term rainfall forecast model based on the improved BP-NN algorithm.

  • Yang Liu‎ et al.
  • Scientific reports‎
  • 2019‎

The existing methods have been used the Zenith Total Delay (ZTD) or Precipitable Water Vapor (PWV) derived from Global Navigation Satellite System (GNSS) for rainfall forecasting. However, the occurrence of rainfall is highly related to a myriad of atmospheric parameters, and a good forecast result cannot be obtained if it only depends on a single predictor. This study focused on rainfall forecasting by using a number of atmospheric parameters (such as: temperature, relative humidity, dew temperature, pressure, and PWV) based on the improved Back Propagation Neural Network (BP-NN) algorithm. Results of correlation analysis showed that each meteorological parameter contributed to rainfall. Therefore, a short-term rainfall forecast model was proposed based on an improved BP-NN algorithm by using multiple meteorological parameters. Two GNSS stations and collocated weather stations in Singapore were used to validate the proposed rainfall forecast model by using three years of data (2010-2012). True forecast (TFR), false forecast (FFR), and missed forecast (MFR) rate were introduced as evaluation indices. The experimental result revealed that the proposed model exhibited good performance with TFR larger than 96% and FFR of approximately 40%. The proposed method improved TFR by approximately 10%, whereas FFR was comparable to existing literature. This forecasted result further verified the reliability and practicability of the proposed rainfall forecasting method by using the improved BP-NN algorithm.


Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting.

  • Qingzhi Zhao‎ et al.
  • Scientific reports‎
  • 2018‎

GPS-based Zenith Tropospheric Delay (ZTD) estimation should be easily obtained in a cost-effective way, however, the most previous studies focus on post-processed ZTD estimates using satellite orbit and clock products with at least 3-9 hours latency provided by International GNSS Service (IGS), which limits the GNSS meteorological application for nowcasting. With the development of IGS's real-time pilot project (RTPP), this limitation was removed by April, 2013 as real-time satellite orbit and clock products can be obtained on-line. In this paper, on the one hand, the GPS-derived ZTD estimation was evaluated using the IGS final and real-time satellite products based on independently developed PPP software. On the other hand, the analysis of the time series of GPS-derived ZTD by least-square fitting of a broken line tendency for a full year of observations, and a forecasting method for precipitation is proposed based on the ZTD slope in the ascending period. The agreement between ZTD slope and the ground rainfall records suggested that the proposed method is useful for the assisted forecasting, especially for short-term alarms.


SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance.

  • Junxiu Sheng‎ et al.
  • EBioMedicine‎
  • 2018‎

Radioresistance is the major cause of cancer treatment failure. Additionally, splicing dysregulation plays critical roles in tumorigenesis. However, the involvement of alternative splicing in resistance of cancer cells to radiotherapy remains elusive. We sought to investigate the key role of the splicing factor SRSF1 in the radioresistance in lung cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: