Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Dopamine D1 or D2 receptor-expressing neurons in the central nervous system.

  • Xiaoyan Wei‎ et al.
  • Addiction biology‎
  • 2018‎

Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R-expressing or D2R-expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP-positive and Cre-positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4-34 percent of neurons co-expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R-positive and D1R-negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a-Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R-positive and D2R-positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R-expressing or D2R-expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.


Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons.

  • Hirofumi Morishita‎ et al.
  • Biological psychiatry‎
  • 2015‎

Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity.


Tregs promote the differentiation of Th17 cells in silica-induced lung fibrosis in mice.

  • Laiyu Song‎ et al.
  • PloS one‎
  • 2012‎

Silicosis is an occupational lung disease caused by inhalation of silica dust and characterized by lung inflammation and fibrosis. Previous study showed that Tregs regulate the process of silicosis by modulating the maintenance of immune homeostasis in the lung. Th17 cells share reciprocal developmental pathway with Tregs and play a pivotal role in the immunopathogenesis of many lung diseases by recruiting and activating neutrophils, but the regulatory function of Tregs on Th17 response in silica induced lung fibrosis remains to be explored.


Whole-Brain Mapping of Direct Inputs to Dopamine D1 and D2 Receptor-Expressing Medium Spiny Neurons in the Posterior Dorsomedial Striatum.

  • Jiayi Lu‎ et al.
  • eNeuro‎
  • 2021‎

The posterior dorsomedial striatum (pDMS) is mainly composed of medium spiny neurons (MSNs) expressing either dopamine D1 receptors (D1Rs) or D2Rs. Activation of these two MSN types produces opposing effects on addictive behaviors. However, it remains unclear whether pDMS D1-MSNs or D2-MSNs receive afferent inputs from different brain regions or whether the extrastriatal afferents express distinct dopamine receptors. To assess whether these afferents also contained D1Rs or D2Rs, we generated double transgenic mice, in which D1R-expressing and D2R-expressing neurons were fluorescently labeled. We used rabies virus-mediated retrograde tracing in these mice to perform whole-brain mapping of direct inputs to D1-MSNs or D2-MSNs in the pDMS. We found that D1-MSNs preferentially received inputs from the secondary motor, secondary visual, and cingulate cortices, whereas D2-MSNs received inputs from the primary motor and primary sensory cortices, and the thalamus. We also discovered that the bed nucleus of the stria terminalis (BNST) and the central nucleus of the amygdala (CeA) contained abundant D2R-expressing, but few D1R-expressing, neurons in a triple transgenic mouse model. Remarkably, although limited D1R or D2R expression was observed in extrastriatal neurons that projected to D1-MSNs or D2-MSNs, we found that cortical structures preferentially contained D1R-expressing neurons that projected to D1-MSNs or D2-MSNs, while the thalamus, substantia nigra pars compacta (SNc), and BNST had more D2R-expressing cells that projected to D2-MSNs. Taken together, these findings provide a foundation for future understanding of the pDMS circuit and its role in action selection and reward-based behaviors.


Bidirectional and long-lasting control of alcohol-seeking behavior by corticostriatal LTP and LTD.

  • Tengfei Ma‎ et al.
  • Nature neuroscience‎
  • 2018‎

Addiction is proposed to arise from alterations in synaptic strength via mechanisms of long-term potentiation (LTP) and depression (LTD). However, the causality between these synaptic processes and addictive behaviors is difficult to demonstrate. Here we report that LTP and LTD induction altered operant alcohol self-administration, a motivated drug-seeking behavior. We first induced LTP by pairing presynaptic glutamatergic stimulation with optogenetic postsynaptic depolarization in the dorsomedial striatum, a brain region known to control goal-directed behavior. Blockade of this LTP by NMDA-receptor inhibition unmasked an endocannabinoid-dependent LTD. In vivo application of the LTP-inducing protocol caused a long-lasting increase in alcohol-seeking behavior, while the LTD protocol decreased this behavior. We further identified that optogenetic LTP and LTD induction at cortical inputs onto striatal dopamine D1 receptor-expressing neurons controlled these behavioral changes. Our results demonstrate a causal link between synaptic plasticity and alcohol-seeking behavior and suggest that modulation of this plasticity may inspire a therapeutic strategy for addiction.


Differential, phosphorylation dependent trafficking of AQP2 in LLC-PK1 cells.

  • William L Rice‎ et al.
  • PloS one‎
  • 2012‎

The kidney maintains water homeostasis by modulating aquaporin 2 (AQP2) on the plasma membrane of collecting duct principal cells in response to vasopressin (VP). VP mediated phosphorylation of AQP2 at serine 256 is critical for this effect. However, the role of phosphorylation of other serine residues in the AQP2 C-terminus is less well understood. Here, we examined the effect of phosphorylation of S256, S261 and S269 on AQP2 trafficking and association with recycling pathway markers. We used LLC-PK1 cells expressing AQP2(S-D) or (S-A) phospho mutants and a 20°C cold block, which allows endocytosis to continue, but prevents protein exit from the trans Golgi network (TGN), inducing formation of a perinuclear AQP2 patch. AQP2-S256D persists on the plasma membrane during cold block, while wild type AQP2, AQP2-S256A, S261A, S269A and S269D are internalized and accumulate in the patch. Development of this patch, a measure of AQP2 internalization, was most rapid with AQP2-S256A, and slowest with S261A and S269D. AQP2-S269D exhibited a biphasic internalization profile with a significant amount not internalized until 150 minutes of cold block. After rewarming to 37°C, wt AQP2, AQP2-S261A and AQP2-S269D rapidly redistributed throughout the cytoplasm within 20 minutes, whereas AQP2-S256A dissipated more slowly. Colocalization of AQP2 mutants with several key vesicular markers including clathrin, HSP70/HSC70, EEA, GM130 and Rab11 revealed no major differences. Overall, our data provide evidence supporting the role of S256 and S269 in the maintenance of AQP2 at the cell surface and reveal the dynamics of internalization and recycling of differentially phosphorylated AQP2 in cell culture.


Down regulation of lincRNA-p21 contributes to gastric cancer development through Hippo-independent activation of YAP.

  • Ying Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Long intergenic non-coding RNA p21 (lincRNA-p21), known as the direct transcriptional target of p53, was found down-regulated in several human solid tumors. However, little is known about the role of lincRNA-p21 in gastric cancer. The expression levels of lincRNA-p21 in tissue samples and cell lines were detected by qRT-PCR. MGC-803 and MKN-45 cells were transfected with siRNAs targeting lincRNA-p21 or control siRNAs to determine the effect of reduced lincRNA-p21 expression on tumorigenesis. We also overexpressed lincRNA-p21 in MGC-803 cells. Cell proliferation was measured by CCK-8 and Ethynyl-2-deoxyuridine (EdU) incorporation assays. Migration and invasion abilities of cells were measured by wound healing and transwell assay. We demonstrated that lincRNA-p21 was significantly reduced in gastric cancer tissues (p<0.001) compared with that in normal tissues and this lower level of lincRNA-p21 was significantly correlated with higher invasion depth grade (p=0.024), more distant metastasis (p=0.009) and advanced TNM stage (p=0.011). Further study revealed that knock down of lincRNA-p21 could promote malignant behavior of gastric cancer cells and induce epithelial to mesenchymal transition (EMT). Overexpressing lincRNA-p21 showed opposite effects. Moreover, knocking down lincRNA-p21 could elevate the expression of Yes associated protein (YAP), the core effector of Hippo signaling, by elevating mRNA levels and increasing its nucleus translocation instead of the canonical Hippo pathway. Overexpression experiments verified the regulation role of lincRNA-p21 in YAP expression. Collectively, these data suggest that lincRNA-p21 could serve as a potential biomarker and a vital therapeutic target in gastric cancer.


Robust generation of human-chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases.

  • Beatrice Xuan Ho‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation.


Effects of lipid emulsions on the formation of Escherichia coli-Candida albicans mixed-species biofilms on PVC.

  • Shanshan Li‎ et al.
  • Scientific reports‎
  • 2021‎

Patients receiving lipid emulsions are at increased risk of contracting catheter-related bloodstream infections (CRBSIs) in the clinic. More than 15% of CRBSIs are polymicrobial. The objective of this study was to explore the effects of lipid emulsions on the formation of Escherichia coli (E. coli)-Candida albicans (C. albicans) mixed-species biofilms (BFs) on polyvinyl chloride (PVC) surfaces and the underlying mechanism. Mixed-species BFs were produced by coculturing E. coli and C. albicans with PVC in various concentrations of lipid emulsions. Crystal violet staining and XTT assays were performed to test the mixed-species BF biomass and the viability of microbes in the BFs. The microstructures of the BFs were observed by an approach that combined confocal laser scanning microscopy, fluorescence in situ hybridization, and scanning electron microscopy. The study found that lipid emulsions could promote the formation of E. coli-C. albicans mixed-species BFs, especially with 10% lipid emulsions. The mechanism by which lipid emulsions promote mixed-species BF formation may involve significant upregulation of the expression of the flhDC, iha, HTA1, and HWP1 genes, which are associated with bacterial motility, adhesion, and BF formation. The results derived from this study necessitate strict aseptic precautions when handling lipid emulsions and avoiding the use of high concentrations of lipid emulsions for as long as possible.


A dynamic ubiquitination balance of cell proliferation and endoreduplication regulators determines plant organ size.

  • Ying Chen‎ et al.
  • Science advances‎
  • 2024‎

Ubiquitination plays a crucial role throughout plant growth and development. The E3 ligase DA2 has been reported to activate the peptidase DA1 by ubiquitination, hereby limiting cell proliferation. However, the molecular mechanisms that regulate DA2 remain elusive. Here, we demonstrate that DA2 has a very high turnover and auto-ubiquitinates with K48-linkage polyubiquitin chains, which is counteracted by two deubiquitinating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13. Unexpectedly, we found that auto-ubiquitination of DA2 does not influence its stability but determines its E3 ligase activity. We also demonstrate that impairing the protease activity of DA1 abolishes the growth-reducing effect of DA2. Last, we show that synthetic, constitutively activated DA1-ubiquitin fusion proteins overrule this complex balance of ubiquitination and deubiquitination and strongly restrict growth and promote endoreduplication. Our findings highlight a nonproteolytic function of K48-linked polyubiquitination and reveal a mechanism by which DA2 auto-ubiquitination levels, in concert with UBP12 and UBP13, precisely monitor the activity of DA1 and fine-tune plant organ size.


Oncogenic Integration of Nucleotide Metabolism via Fatty Acid Synthase in Non-Hodgkin Lymphoma.

  • Dashnamoorthy Ravi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Metabolic dysfunctions enabling increased nucleotide biosynthesis are necessary for supporting malignant proliferation. Our investigations indicate that upregulation of fatty acid synthase (FASN) and de novo lipogenesis, commonly observed in many cancers, are associated with nucleotide metabolic dysfunction in lymphoma. The results from our experiments showed that ribonucleotide and deoxyribonucleotide pool depletion, suppression of global RNA/DNA synthesis, and cell cycle inhibition occurred in the presence of FASN inhibition. Subsequently, we observed that FASN inhibition caused metabolic blockade in the rate-limiting step of the oxidative branch of the pentose phosphate pathway (oxPPP) catalyzed by phosphogluconate dehydrogenase (PGDH). Furthermore, we determined that FASN inhibitor treatment resulted in NADPH accumulation and inhibition of PGDH enzyme activity. NADPH is a cofactor utilized by FASN, also a known allosteric inhibitor of PGDH. Through cell-free enzyme assays consisting of FASN and PGDH, we delineated that the PGDH-catalyzed ribulose-5-phosphate synthesis is enhanced in the presence of FASN and is suppressed by increasing concentrations of NADPH. Additionally, we observed that FASN and PGDH were colocalized in the cytosol. The results from these experiments led us to conclude that NADP-NADPH turnover and the reciprocal stimulation of FASN and PGDH catalysis are involved in promoting oxPPP and nucleotide biosynthesis in lymphoma. Finally, a transcriptomic analysis of non-Hodgkin's lymphoma (n = 624) revealed the increased expression of genes associated with metabolic functions interlinked with oxPPP, while the expression of genes participating in oxPPP remained unaltered. Together we conclude that FASN-PGDH enzymatic interactions are involved in enabling oxPPP and nucleotide metabolic dysfunction in lymphoma tumors.


Transferrin-targeted magnetic/fluorescence micelles as a specific bi-functional nanoprobe for imaging liver tumor.

  • Hui Qi‎ et al.
  • Nanoscale research letters‎
  • 2014‎

In order to delineate the location of the tumor both before and during operation, we developed targeted bi-functional polymeric micelles for magnetic resonance (MR) and fluorescence imaging in liver tumors. Hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) were loaded into the polymeric micelles through self-assembly of an amphiphilic block copolymer poly(ethylene glycol)-poly(ϵ-caprolactone). After, transferrin (Tf) and near-infrared fluorescence molecule Cy5.5 were conjugated onto the surface of the polymeric micelles to obtain the nanosized probe SPIO@PEG-b-PCL-Tf/Cy5.5 (SPPTC). Imaging capabilities of this nanoprobe were evaluated both in vitro and in vivo. The accumulation of SPPTC in HepG2 cells increased over SPIO@PEG-b-PCL-Cy5.5 (SPPC) by confocal microscopy. The targeted nanoprobe SPPTC possessed favorable properties on the MR and fluorescence imaging both in vitro and in vivo. The MTT results showed that the nanoprobes were well tolerated. SPPTC had the potential for pre-operation evaluation and intra-operation navigation of tumors in clinic.


Hemodynamic testing using three-dimensional printing and computational fluid dynamics preoperatively may provide more information in mitral repair than traditional image dataset.

  • Hao Wang‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Mitral valve repair (MVR) has been considered superior to mitral replacement for degenerative MV disease and even rheumatic diseases. However, the repair rate varies widely depending on the medical center and the surgeons' experience. The aim of our study was to apply three-dimensional printing (3DP) and computational fluid dynamics (CFD) in surgical simulation to provide reference for surgical decision-making, especially for inexperienced surgeons.


Generation of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Stably Expressing Two Marker Genes.

  • Hao Wang‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Porcine reproductive and respiratory syndrome virus (PRRSV) has been used as a gene expression vector in the development of vaccines. Most of these recombinant PRRSV vectors express only a single foreign gene through either an internal insertion in the hypervariable region of nsp2 or expression cassette and some of these recombinant vectors are genetically unstable. Here, we combined internal insertion in nsp2 and expression cassette methods to generate a novel recombinant PRRSV stably expressing the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological characteristic analysis of the recombinant PRRSV carrying the two marker genes, rGX-RFP-GFP, showed that it displayed similar growth kinetics and yet it yielded less infectious viruses when compared to the parental virus rGXAM. Co-expression of both the RFP and GFP was observed using confocal fluorescence microscopy when the rGX-RFP-GFP viruses infected MARC-145 cells. Furthermore, the PRRSV-based two-marker gene expression vector is genetically stable during 20 serial passages in MARC-145 cells. These data demonstrate that it is possible to express two interested immunogens from a single PRRSV vector.


UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2.

  • Hannes Vanhaeren‎ et al.
  • eLife‎
  • 2020‎

Protein ubiquitination is a very diverse post-translational modification leading to protein degradation or delocalization, or altering protein activity. In Arabidopsis thaliana, two E3 ligases, BIG BROTHER (BB) and DA2, activate the latent peptidases DA1, DAR1 and DAR2 by mono-ubiquitination at multiple sites. Subsequently, these activated peptidases destabilize various positive growth regulators. Here, we show that two ubiquitin-specific proteases, UBP12 and UBP13, deubiquitinate DA1, DAR1 and DAR2, hence reducing their peptidase activity. Overexpression of UBP12 or UBP13 strongly decreased leaf size and cell area, and resulted in lower ploidy levels. Mutants in which UBP12 and UBP13 were downregulated produced smaller leaves that contained fewer and smaller cells. Remarkably, neither UBP12 nor UBP13 were found to be cleavage substrates of the activated DA1. Our results therefore suggest that UBP12 and UBP13 work upstream of DA1, DAR1 and DAR2 to restrict their protease activity and hence fine-tune plant growth and development.


Chronic alcohol drinking persistently suppresses thalamostriatal excitation of cholinergic neurons to impair cognitive flexibility.

  • Tengfei Ma‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Exposure to addictive substances impairs flexible decision making. Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs). However, how chronic alcohol drinking alters cognitive flexibility through CINs remains unclear. Here, we report that chronic alcohol consumption and withdrawal impaired reversal of instrumental learning. Chronic alcohol consumption and withdrawal also caused a long-lasting (21 days) reduction of excitatory thalamic inputs onto CINs and reduced pause responses of CINs in the dorsomedial striatum (DMS). CINs are known to inhibit glutamatergic transmission in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) but facilitate this transmission in D2-MSNs, which may contribute to flexible behavior. We discovered that chronic alcohol drinking impaired CIN-mediated inhibition in D1-MSNs and facilitation in D2-MSNs. Importantly, in vivo optogenetic induction of long-term potentiation of thalamostriatal transmission in DMS CINs rescued alcohol-induced reversal learning deficits. These results demonstrate that chronic alcohol drinking reduces thalamic excitation of DMS CINs, compromising their regulation of glutamatergic transmission in MSNs, which may contribute to alcohol-induced impairment of cognitive flexibility. These findings provide a neural mechanism underlying inflexible drinking in alcohol use disorder.


Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect.

  • Wei Wang‎ et al.
  • Cell reports‎
  • 2023‎

Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.


A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection.

  • Don B Gammon‎ et al.
  • eLife‎
  • 2014‎

Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.


Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo.

  • Alexandra L Schober‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2016‎

Recombinant adeno-associated virus vectors are an increasingly popular tool for gene delivery to the CNS because of their non-pathological nature, low immunogenicity, and ability to stably transduce dividing and non-dividing cells. One of the limitations of rAAVs is their preferential tropism for neuronal cells. Glial cells, specifically astrocytes, appear to be infected at low rates. To overcome this limitation, previous studies utilized rAAVs with astrocyte-specific promoters or assorted rAAV serotypes and pseudotypes with purported selectivity for astrocytes. Yet, the reported glial infection rates are not consistent from study to study. In the present work, we tested seven commercially available recombinant serotypes- rAAV1, 2, and 5 through 9, for their ability to transduce primary rat astrocytes [visualized via viral expression of green fluorescent protein (GFP)]. In cell cultures, rAAV6 consistently demonstrated the highest infection rates, while rAAV2 showed astrocytic transduction in some, but not all, of the tested viral batches. To verify that all rAAV constructs utilized by us were viable and effective, we confirmed high infectivity rates in retinal pigmented epithelial cells (ARPE-19), which are known to be transduced by numerous rAAV serotypes. Based on the in vitro results, we next tested the cell type tropism of rAAV6 and rAAV2 in vivo, which were both injected in the barrel cortex at approximately equal doses. Three weeks later, the brains were sectioned and immunostained for viral GFP and the neuronal marker NeuN or the astrocytic marker GFAP. We found that rAAV6 strongly and preferentially transduced astrocytes (>90% of cells in the virus-infected areas), but not neurons (∼10% infection rate). On the contrary, rAAV2 preferentially infected neurons (∼65%), but not astrocytes (∼20%). Overall, our results suggest that rAAV6 can be used as a tool for manipulating gene expression (either delivery or knockdown) in rat astrocytes in vivo.


Novel Findings in Teleost TRAF4, a Protein Acts as an Enhancer in TRIF and TRAF6 Mediated Antiviral and Inflammatory Signaling.

  • Ying Chen‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Tumor necrosis factor receptor-associated factors (TRAFs) are important adaptor molecules that play important roles in host immune regulation and inflammatory responses. Compared to other members of TRAFs, the function of TRAF4 in vertebrate immunity remains unclear, especially in teleosts. In the present study, TRAF4 ortholog was cloned and identified in large yellow croaker (Larimichthys crocea), named as Lc-TRAF4. The open reading frame (ORF) of Lc-TRAF4 is 1,413 bp and encodes a protein of 470 amino acids (aa), which is consisted of a RING finger domain, two zinc finger domains, and a MATH domain. The genome organization of Lc-TRAF4 is conserved in teleosts, amphibians, birds, and mammals, with 7 exons and 6 introns. Quantitative real-time PCR analysis revealed that Lc-TRAF4 was broadly distributed in various organs/tissues of healthy large yellow croakers and could be significantly up-regulated in the gill, intestine, spleen, head kidney, and blood under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations. Notably, luciferase assays showed that overexpression of Lc-TRAF4 could significantly induce the activation of IRF3, IRF7, and type I IFN promoters, with the RING finger and zinc finger domains function importantly in such promoter activation. Confocal microscopy revealed that Lc-TRAF4 is located in the cytoplasm, whereas the deletion of the RING finger, zinc finger or MATH domain showed little effect on the subcellular localization of Lc-TRAF4. Interestingly, Lc-TRAF4 overexpression could significantly enhance Lc-TRIF and Lc-TRAF6 medicated IRF3 and IRF7 promoter activation. In addition, co-expression of Lc-TRAF4 with Lc-TRIF or Lc-TRAF6 could significantly induce the expression of antiviral and inflammation-related genes, including IRF3, IRF7, ISG15, ISG56, Mx, RSAD2, TNF-α, and IL-1β compared to the only overexpression of Lc-TRAF4, Lc-TRIF or Lc-TRAF6. These results collectively imply that Lc-TRAF4 functions as an enhancer in Lc-TRIF and Lc-TRAF6 mediated antiviral and inflammatory signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: