Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Regulatory landscape and clinical implication of MBD3 in human malignant glioma.

  • Yi Cui‎ et al.
  • Oncotarget‎
  • 2016‎

In this article we inspect the roles and functions of the methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, to assess its potential as an epigenetic biomarker for prognosis. The regulatory effects of MBD3 on glioma transcriptome were first profiled by high-throughput microarray. Our results indicate that MBD3 is involved in both transcriptional activation and repression. Furthermore, MBD3 fine-controls a spectrum of proteins critical for cellular metabolism and proliferation, thereby contributing to an exquisite anti-glioma network. Specifically, the expression of MHC class II molecules was found to positively correlate with MBD3, which provides new insight into the immune escape of gliomagenesis. In addition, MBD3 participates in constraining a number of oncogenic non-coding RNAs whose over-activation could drive cells into excessive growth and higher malignancy. Having followed up a pilot cohort, we noted that the survival of malignant glioma patients was proportional to the content of MBD3 and 5-hydroxymethylcytosine (5hmC) in their tumor cells. The progression-free survival (PFS) and overall survival (OS) were relatively poor for patients with lower amount of MBD3 and 5hmC in the tissue biopsies. Taken together, this work enriches our understanding of the mechanistic involvement of MBD3 in malignant glioma.


Transcriptional repression of FOXO1 by KLF4 contributes to glioma progression.

  • Guodong Tang‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, our findings indicated that FOXO1 expression frequently decreased in glioma tissues and cells. FOXO1 expression decrease correlated with glioma progression and predicted a worse overall survival of glioma patients. Restored FOXO1 expression inhibited glioma cells invasion and suppressed glioma cells proliferation in vitro and growth in vivo. Additionally, we found that KLF4 expression frequently increased in glioma tissues and negatively correlated with FOXO1 expression. Bioinformatics analysis and experimental results indicated that KLF4 transcriptionally repressed FOXO1 expression in glioma cells. Moreover, KLF4 expression increase correlated with glioma progression and predicted a poorer overall survival of glioma patients. KLF4 knockdown attenuated glioma cells invasion and growth. These data provide a rationale for targeted intervention on KLF4-FOXO1 signaling pathway to suppress glioma progression.


Relationship between LINC00341 expression and cancer prognosis.

  • Meijian Liao‎ et al.
  • Oncotarget‎
  • 2017‎

LINC00341 is a novel long intergenic non-protein coding RNA with unknown functions. In our report, we investigated LINC00341 expression and its prognostic value in cancer patients. DNA over-methylation triggered low expression of LINC00341 and that was associated with poor prognosis in cancers. A meta-analysis further confirmed that high expression of LINC00341 was associated with a better prognosis in cancer patients. Both gene set enrichment analysis and meta-analysis showed that LINC00341 inhibited cancer metastasis. Finally, a large-scale multicentre analysis supported a prognostic value of LINC00341 in cancers.


MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A.

  • Wei Luo‎ et al.
  • Oncotarget‎
  • 2016‎

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that contributes to the initiation and development of many solid tumors, including osteosarcoma (OS). Here, we showed that MALAT1 was increased in human OS cell lines and tissues and promoted OS cell growth, while MALAT1 knockdown suppressed OS cell growth. We also detected downregulation of MIR376A, a suppressor of OS growth, and upregulation of TGFA, a promoter of OS growth, in OS tissues. TGFA expression was positively correlated with MALAT1 expression, and both were negatively correlated with MIR376A expression. There was a direct interaction between MIR376A and MALAT1 via a putative MIR376A binding site within the MALAT1 3'-untranslated region (3'-UTR). There was also a direct interaction between MIR376A and the TGFA 3'-UTR. Thus, MALAT1 may promote OS cell growth through inhibition of MIR376A, leading to increased expression of TGFA. Our results suggest a MALAT1/MIR376A/TGFA axis mediates OS cell proliferation and tumor progression.


Upregulation of miR-126-3p promotes human saphenous vein endothelial cell proliferation in vitro and prevents vein graft neointimal formation ex vivo and in vivo.

  • Qingxi Qu‎ et al.
  • Oncotarget‎
  • 2017‎

Poor long-term patency of vein grafts remains an obstacle in coronary artery bypass grafting (CABG) surgery using an autologous saphenous vein graft. Recent studies have revealed that miR-126-3p promotes vascular integrity and angiogenesis. We aimed to identify the role of miR-126-3p in the setting of vein graft disease and investigate the value of miR-126-3p agomir as a future gene therapy in vein graft failure. Expression analysis of circulating miR-126-3p in plasma from CABG patients established the basic clues that miR-126-3p participates in CABG. The in vitro results indicated that elevated miR-126-3p expression significantly improved proliferation and migration in human saphenous vein endothelial cells (HSVECs) by targeting sprouty-related protein-1 (SPRED-1) and phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2), but not in human saphenous vein smooth muscle cells (HSVSMCs). Moreover, the therapeutic potential of miR-126-3p agomir was demonstrated in cultured human saphenous vein (HSV) ex vivo. Finally, local delivery of miR-126-3p agomir was confirmed to enhance reendothelialization and attenuate neointimal formation in a rat vein arterialization model. In conclusion, we provide evidence that upregulation of miR-126-3p by agomir possesses potential clinical value in the prevention and treatment of autologous vein graft restenosis in CABG.


Overexpression of WWP1 promotes tumorigenesis and predicts unfavorable prognosis in patients with hepatocellular carcinoma.

  • Xiao-Fei Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) has been speculated to play important roles in the development of several kinds of cancers. However, the role of WWP1 in hepatocellular carcinoma(HCC) is not clear. In the present study, we investigated the expression and prognostic role of WWP1 in primary hepatocellular carcinoma (HCC) using cell lines and 149 archived HCC samples. Correlation between the functions of WWP1 in HCC was also explored. We used human HCC cell lines (BEL-7402, SMMC-7721, Hep-G2, Hep-3B, SK-hep1 and Huh7) and a normal hepatocyte cell line (LO2) along with HCC samples from patients who had undergone resection for HCC previously at our hospital. A battery of methods (real-time quantitative polymerase chain reaction; western blotting; immunohistochemical analyses; cell proliferation and colony formation assays; cell migration and cell invasion assays) were employed to assess various aspects of WWP1. We found that WWP1 expression was upregulated aberrantly at mRNA and protein levels in human primary HCC tissues. Amplified expression of WWP1 was highly correlated with poor outcome. Silencing of WWP1 expression by siRNA inhibited the proliferation, colony formation, migration and invasion of HCC cells in vitro, and resulted in significant apoptosis and cycle arrest in HCC cells. Our findings suggest that WWP1 might have an oncogenic role in human primary HCC, and that it could be used as a prognostic marker as well as a potential molecular target for the treatment of HCC.


A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma.

  • Shan-Shan Jiang‎ et al.
  • Oncotarget‎
  • 2015‎

This report describes an ongoing Phase I clinical trial testing the safety of adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) in patients with primary hepatocellular carcinoma (HCC). Fifteen HCC patients were treated with their activated and expanded TILs following tumor resection. From a total of 17 patients with HCC, TIL were successfully expanded from 15 patients (88%), whereas two patients showed minimal or no expansion of TIL. Transient increase in the frequency of T cells was observed after adoptive transfer who was found only associated with grade I flu-like symptoms and malaise. After a median follow-up of 14 months, 15 patients (100%) were alive; and 12 patients (80%) showed no evidence of disease, 3 patients (patient 1,11,12) had tumor recurrence. The time to the diagnosis of tumor recurrence following therapy ranged from 105 to 261 days. These results indicate that immunotherapy with activated and expanded autologous TIL could be successfully performed with low toxicity, thus would serve as a novel treatment modality for patients with HCC.


An esophageal squamous cell carcinoma classification system that reveals potential targets for therapy.

  • Teng Xiong‎ et al.
  • Oncotarget‎
  • 2017‎

ESCC (Esophageal squamous cell carcinoma) is a heterogeneous cancer with diverse prognosis. Here, to explore the biological diversity of ESCC, we employed gene expression profiles from 360 ESCC tumors from East Asians to establish a comprehensive molecular classification and characterization of ESCC. Using the specific 185-gene signature generated by unsupervised consensus clustering of gene expression data, we defined four subtypes associated with distinct clinical metrics: tumors with high metastasis associated with EMT (epithelial to mesenchymal transition) and active MAP4K4/JNK signaling pathway; tumors with high chromosomal instability with up regulated MYC targes; well differentiated tumors with less aggressive and moderated tumors. The clinical relevance of these subtypes was stated by significant differences in prognosis. Importantly, 24% of all ESCCs (n = 360) were classified into the high metastasis subtype associated with poorly differentiation and unfavorable prognosis. We provided evidence that this subtype relates to tumor microenvironment. Collectively, these results might contribute to more precise personalized therapeutic strategies for each subtype of ESCC patients in the near future.


miR-29c contribute to glioma cells temozolomide sensitivity by targeting O6-methylguanine-DNA methyltransferases indirectely.

  • Songhua Xiao‎ et al.
  • Oncotarget‎
  • 2016‎

Temozolomide (TMZ) is the most commonly used alkylating agent in glioma chemotherapy. However growing resistance to TMZ remains a major challenge to clinicians. The DNA repair protein O6-methylguanine-DNA methytransferase (MGMT) plays critical roles in TMZ resistance. Promoter methylation can inhibit MGMT expression and increase chemosensitivity. Here, we described a novel mechanism regulating MGMT expression. We showed that miR-29c suppressed MGMT expression indirectly via targeting specificity protein 1 (Sp1). MiR-29c overexpression increased TMZ efficacy in cultured glioma cells and in mouse xenograft models. The miR-29c levels were positively correlated with patient outcomes. Our data suggest miR-29c may be potential therapeutic targets for glioma treatment.


Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo.

  • Haoyu Li‎ et al.
  • Oncotarget‎
  • 2017‎

Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy. Here, we report that a multi-targeted tyrosine kinase inhibitor ponatinib inhibited NB cell proliferation and induced NB cell apoptosis in a dose-dependent manner. In addition, ponatinib suppressed the colony formation ability of NB cells. Mechanistically, ponatinib effectively inhibited the FGFR1-activated signaling pathway. Ponatinib also enhanced the cytotoxic effects of doxorubicin on NB cells. Furthermore, ponatinib demonstrated anti-tumor efficacy in vivo by inhibiting tumor growth in an orthotopic xenograft NB mouse model. In summary, our results showed that ponatinib inhibited NB growth both in vitro and in vivo.


Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling.

  • Yixin Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Ischemia reperfusion (I/R) injury which inevitably occurs during heart transplantation is the major factor leading to organ failure and graft rejection. In order to develop new therapies to prevent I/R injury, we used both a murine heart transplantation model with 24 hour cold I/R and an in vitro cell culture system to determine whether growth differentiation factor 15 (GDF15) is a protective factor in preventing I/R injury in heart transplantation and to further investigate underlying mechanisms of I/R injury. We found that cold I/R caused severe damage to the endocardium, epicardium and myocardium of heart grafts from wild type C57BL/6 mice, whereas grafts from GDF15 transgenic (TG) mice showed less damage as demonstrated by decreased cell apoptosis/death, decreased neutrophils infiltration and the preservation of the normal structure of the heart. Over-expression of GDF15 reduced expression of phosphorylated RelA p65, pre-inflammatory and pro-apoptotic genes while it enhanced Foxo3a phosphorylation in vitro and in vivo. Over-expression of GDF15 inhibited cell apoptosis/death and reduced neutrophil infiltration. In conclusion, this study, for the first time, demonstrates that GDF15 is a promising target for preventing cold I/R injury in heart transplantation. This study also shows that the resultant protective effects are mediated by the Foxo3 and NFκB signaling pathways.


A novel pathogenic germline mutation in the adenomatous polyposis coli gene in a Chinese family with familial adenomatous coli.

  • Shan-Shan Jiang‎ et al.
  • Oncotarget‎
  • 2015‎

Familial adenomatous polyposis (FAP) is an autosomal dominant disease manifesting as colorectal cancer in middle-aged patients. Mutations of the adenomatous polyposis coli (APC) gene contribute to both FAP and sporadic or familial colorectal carcinogenesis. Here we describe the identification of the causative APC gene defects associated with FAP in a Chinese pedigree. All patients with FAP were diagnosed by their combination of clinical features, family history, colonoscopy, and pathology examinations. Blood samples were collected and genomic DNA was extracted. Mutation analysis of APC was conducted by targeted next-generation sequencing, long-range PCR and Sanger sequencing. A novel mutation in exon 14-15(c.1936-2148 del) and intron 14 of the APC gene was demonstrated in all FAP patients and was absent in unaffected family members. This novel deletion causing FAP in Chinese kindred expands the germline mutation spectrum of the APC gene in the Chinese population.


miR-202 inhibits the progression of human cervical cancer through inhibition of cyclin D1.

  • Yuexiong Yi‎ et al.
  • Oncotarget‎
  • 2016‎

The human cervical cancer (CC) acts as the most common one of women tumors. However, the pathological changes and molecular alterations of CC are not clear. It has been reported that miR-202 takes part in the development and progression of different tumors. The present study aims to detect the expression of miR-202 in 100 cases of CC tissues and cells, and then we continued to investigate the potential mechanisms of miR-202 in CC cells. In this work, we found that the expression of miR-202 is obviously decreased in both CC cell lines and tissues, and negatively related with the expression of cyclin D1 in SiHa, HeLa and Caski cells. In-vitro assay revealed that the ectopic expression of miR-202 suppressed the proliferation, migration and invasion of SiHa and HeLa cells. Additionally, the over-expression of miR-202 extremely affected the expression of cyclin D1 protein. Notably, the over-expression of cyclin D1 in SiHa and HeLa cells with miR-202 mimics attenuated the inhibitory effects of miR-202 on cell proliferation, migration and invasion. In conclusion, our study identified that miR-202 plays an important role in regulating cell proliferation, migration and invasion of CC by directly targeting cyclin D1, thus miR-202 may represent a potential therapeutic target for patients with cervical cancer.


Transcriptome profiling of anti-müllerian hormone treated preantral/small antral mouse ovary follicles.

  • Zia Ur Rehman‎ et al.
  • Oncotarget‎
  • 2018‎

The predisposition for the initiation of folliculogenesis in mammals including humans is programmed to start at fetal life and continues until reproductive capacity. The follicles grow from a pool of primordial follicles which retain the major functions in the entire reproductive life of a female. Anti-müllerian hormone (AMH), a glycoprotein belonging to the transforming growth factor-beta family, has an inhibitory effect on ovarian follicle development. The key regulatory target genes in primordial follicle development are of paramount importance in reproductive biology of female. A systems biology method was used to find regulatory genes performing critical role in primordial follicle development. A complete in-depth bioinformatics analysis was performed to investigate the changes in transcriptome of preantral to small antral mouse follicles treated for 12 h and 24 h with two different concentrations; 50 and 200 ng/ml of AMH, and thereby identify candidate genes in time and concentration manner. Firstly, we found differentially expressed genes that were time and concentration dependent in response to AMH. The network analysis of these differentially expressed genes provided new candidate genes and pathways associated with inhibitory action of AMH on the primordial follicle development. To further emphasize the function of AMH, the key identified genes' protein-protein docking was analyzed and found the intracellular and extracellular protein-protein interaction. This study elucidates one of the novel mechanisms of AMH involvement in inhibition of ovarian follicle development which may lead to prolong productive life in female.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: