Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 104 papers

GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation.

  • Liang Cheng‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

Non-small cell lung cancer (NSCLC) is a serious threat to human health, and 40%-80% of NSCLCs express high levels of epidermal growth factor receptor (EGFR). GE11 is a novel peptide and exhibits high affinity for EGFR binding. The aim of this study was to construct and evaluate GE11-modified liposomes for targeted drug delivery to EGFR-positive NSCLC. Doxorubicin, a broad-spectrum antitumor agent, was chosen as the payload. GE11 was conjugated to the distal end of DSPE-PEG2000-Mal by an addition reaction with a conjugation efficiency above 90%. Doxorubicin-loaded liposomes containing GE11 (GE11-LP/DOX) at densities ranging from 0% to 15% were prepared by combination of a thin film hydration method and a post insertion method. Irrespective of GE11 density, the physicochemical properties of these targeted liposomes, including particle size, zeta potential, and drug entrapment efficiency, were nearly identical. Interestingly, the cytotoxic effect of the liposomes on A549 tumor cells was closely related to GE11 density, and liposomes with 10% GE11 had the highest tumor cell killing activity and a 2.6-fold lower half maximal inhibitory concentration than that of the nontargeted counterpart (PEG-LP/DOX). Fluorescence microscopy and flow cytometry analysis revealed that GE11 significantly increased cellular uptake of the liposomes, which could be ascribed to specific EGFR-mediated endocytosis. It was found that multiple endocytic pathways were involved in entry of GE11-LP/DOX into cells, but GE11 assisted in cellular internalization mainly via the clathrin-mediated endocytosis pathway. Importantly, the GE11-modified liposomes showed enhanced accumulation and prolonged retention in tumor tissue, as evidenced by a 2.2-fold stronger mean fluorescence intensity in tumor tissue than the unmodified liposomes at 24 hours. In summary, GE11-modified liposomes may be a promising platform for targeted delivery of chemotherapeutic drugs in NSCLC.


The role of rice HEI10 in the formation of meiotic crossovers.

  • Kejian Wang‎ et al.
  • PLoS genetics‎
  • 2012‎

HEI10 was first described in human as a RING domain-containing protein that regulates cell cycle and cell invasion. Mice HEI10(mei4) mutant displays no obvious defect other than meiotic failure from an absence of chiasmata. In this study, we characterize rice HEI10 by map-based cloning and explore its function during meiotic recombination. In the rice hei10 mutant, chiasma frequency is markedly reduced, and those remaining chiasmata exhibit a random distribution among cells, suggesting possible involvement of HEI10 in the formation of interference-sensitive crossovers (COs). However, mutation of HEI10 does not affect early recombination events and synaptonemal complex (SC) formation. HEI10 protein displays a highly dynamic localization on the meiotic chromosomes. It initially appears as distinct foci and co-localizes with MER3. Thereafter, HEI10 signals elongate along the chromosomes and finally restrict to prominent foci that specially localize to chiasma sites. The linear HEI10 signals always localize on ZEP1 signals, indicating that HEI10 extends along the chromosome in the wake of synapsis. Together our results suggest that HEI10 is the homolog of budding yeast Zip3 and Caenorhabditis elegans ZHP-3, and may specifically promote class I CO formation through modification of various meiotic components.


Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice.

  • Jun Fang‎ et al.
  • The Plant journal : for cell and molecular biology‎
  • 2008‎

Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), zeta-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene beta-cyclase (beta-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice.


DHX32 Promotes Angiogenesis in Colorectal Cancer Through Augmenting β-catenin Signaling to Induce Expression of VEGFA.

  • Huayue Lin‎ et al.
  • EBioMedicine‎
  • 2017‎

We previously reported that overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer (CRC). However, the underlying mechanism is not largely characterized. Herein, we reported that DHX32 in CRC cells upregulated expression of vascular endothelial growth factor A (VEGFA) at the transcription level through interacting with and stabilizing β-catenin. This promoted the recruitment of host endothelial cells to the tumor, and therefore, formation of microvessel in the tumor. Xenograft model revealed that depletion of DHX32 in CRC cells significantly reduced the microvessel density in the grafts and suppressed the growth of grafts. Furthermore, the expression level of DHX32 was positively associated with microvessel density in human CRC and poor outcome of CRC patients. Therefore, the report demonstrates that DHX32 is a pro-angiogenic factor, that inhibition of DHX32-β-catenin pathway can provide a strategy for CRC treatment, and that the expression level of DHX32 has the potential to serve as a biomarker for CRC diagnosis and prognosis.


The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice.

  • Chao Zhang‎ et al.
  • PLoS genetics‎
  • 2018‎

Meiotic cytokinesis influences the fertility and ploidy of gametes. However, limited information is available on the genetic control of meiotic cytokinesis in plants. Here, we identified a rice mutant with low male fertility, defective callose in meiosis 1 (dcm1). The pollen grains of dcm1 are proved to be defective in exine formation. Meiotic cytokinesis is disrupted in dcm1, resulting in disordered spindle orientation during meiosis II and formation of pollen grains with varied size and DNA content. We demonstrated that meiotic cytokinesis defect in dcm1 is caused by prematurely dissolution of callosic plates. Furthermore, peripheral callose surrounding the dcm1 pollen mother cells (PMCs) also disappeared untimely around pachytene. The DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly (A) binding proteins (PABNs) in nuclear speckles. The expression profiles of genes related to callose synthesis and degradation are significantly modified in dcm1. Together, we propose that DCM1 plays an essential role in male meiotic cytokinesis by preserving callose from prematurely dissolution in rice.


Correlation analysis between disease severity and clinical and biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a descriptive study.

  • Dan Wang‎ et al.
  • BMC infectious diseases‎
  • 2020‎

Coronavirus disease 2019 (COVID-19) is a novel infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan and has quickly spread across the world. The mortality rate in critically ill patients with COVID-19 is high. This study analyzed clinical and biochemical parameters between mild and severe patients, helping to identify severe or critical patients early.


A route to de novo domestication of wild allotetraploid rice.

  • Hong Yu‎ et al.
  • Cell‎
  • 2021‎

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Transferrin Conjugated pH- and Redox-Responsive Poly(Amidoamine) Dendrimer Conjugate as an Efficient Drug Delivery Carrier for Cancer Therapy.

  • Qing Hu‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

A multifunctional redox- and pH-responsive polymeric drug delivery system is designed and investigated for targeted anticancer drug delivery to liver cancer.


Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms.

  • Yuan Xiong‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Immunotoxicity of Per- and Polyfluoroalkyl Substances: Insights into Short-Chain PFAS Exposure.

  • Tracey Woodlief‎ et al.
  • Toxics‎
  • 2021‎

Novel per- and polyfluoroalkyl substances (PFAS) were recently identified in drinking water sources throughout North Carolina. These include the perfluoroether acids (PFEAs) perfluoro-2-methoxyacetic acid (PFMOAA), perfluoro-2-methoxypropanoic acid (PFMOPrA), and perfluoro-4-methoxybutanioc acid (PFMOBA). Little toxicological data exist for these PFEAs. Therefore, the present study described signs of toxicity and immunotoxicity following oral exposure. Adult male and female C57BL/6 mice were exposed once/day for 30 days to PFMOAA (0, 0.00025, 0.025, or 2.5 mg/kg), PFMOPrA, or PFMOBA (0, 0.5, 5, or 50 mg/kg). A dose of 7.5 mg/kg of perfluorooctanoic acid (PFOA) was used as a positive control. Terminal body weights, and absolute liver, spleen, or thymus weights did not differ by dose for any compound; exposure to 50 mg/kg of PFMOBA increased relative liver weights in males. Changes in splenic cellularity were observed in males exposed to PFMOPrA and decreased numbers of B and natural killer (NK) cells were observed in males and females exposed to PFMOBA. Exposure did not alter NK cell cytotoxicity or T cell-dependent antibody responses at doses administered. Our results indicate that these "understudied" PFAS have toxicological potential but require additional investigation across endpoints and species, including humans, to understand health effects via drinking water exposure.


Loperamide induces excessive accumulation of bile acids in the liver of mice with different diets.

  • Zili Lei‎ et al.
  • Toxicology‎
  • 2022‎

Loperamide is a non-prescription medicine normally used for the treatment of diarrhea. The abuse and misuse of loperamide have been demonstrated to have toxic effects on heart. It is still unclear whether the abuse of loperamide can cause hepatic toxicity. The C57BL/6 mice fed with high fat diet (HFD) or normal food diet (NFD) were administrated with loperamide (5 mg/kg/day) intragastrically once a day for two weeks, after that, the feces, blood, hepatic tissues and intestines were harvested for biochemical and histological detection, and the expression of genes related with lipid metabolism was further checked by qRT-PCR (quantitative real-time polymerase chain reaction) and Western blot. The administration of loperamide caused the constipation in mice fed with NFD or HFD. The content of bile acids was significantly reduced in the feces of mice treated with loperamide, but the content of bile acids was significantly increased in the liver of these mice. The results of H&E staining showed that loperamide administration caused the damage of hepatic tissues, especially for mice fed with HFD. The expression of genes related with the biosynthesis of cholesterol and bile acids, including Hmgcr, Lss, Sqle, Fdps, Idi1, Mvk, Cyp7a1 and Ch25h, was all upregulated in the liver of mice treated with loperamide. Conversely, the expression of Abcg5, Abcb11 and Abcc2, which encode genes for transporting cholesterols and bile acids from hepatocytes to bile respectively, was downregulated in the liver of mice treated with loperamide. At the same time, the expression of Fabp6 and Slc51a, which transport bile acids from intestinal lumen into the blood, was all upregulated in the ileum of mice treated with loperamide. The expression of SHP, which inhibits the transcription of Cyp7a1 in hepatocytes, was significantly downregulated in the hepatic tissues of mice treated with loperamide. These results demonstrated that administration of loperamide caused excessive accumulation of bile acids in the liver of mice via upregulating genes for biosynthesis of cholesterol and bile acid and downregulating genes for discharging cholesterol and bile acids in hepatocytes of mice, moreover, the downregulation of SHP in hepatic tissues might be one of the mechanisms of it, especially for mice fed with HFD.


SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma.

  • Liying Han‎ et al.
  • Cell death & disease‎
  • 2022‎

Glioma is the most common type of primary malignant tumor in the central nervous system with limited treatment satisfaction. Finding new therapeutic targets has remained a major challenge. Ferroptosis is a novel and distinct type of programmed cell death, playing a regulatory role in the progression of tumors. However, the role of ferroptosis or ferroptosis-related genes (FRGs) in glioma progression has not been extensively studied. In our study, a novel ferroptosis-related prognostic model, including 7 genes, was established, in which patients classified into the high-risk group had more immuno-suppressive status and worse prognosis. Among these 7 genes, we screened solute carrier family 1 member 5 (SLC1A5), an FRG, as a possible new target for glioma treatment. Our results showed that the expression of SLC1A5 was significantly upregulated in glioblastoma tissues compared with the low-grade gliomas. In addition, SLC1A5 knockdown could significantly inhibit glioma cell proliferation and invasion, and reduce the sensitivity of ferroptosis via the GPX4-dependent pathway. Furthermore, SLC1A5 was found to be related to immune response and SLC1A5 knockdown decreased the infiltration and M2 polarization of tumor-associated macrophages. Pharmacological inhibition of SLC1A5 by V9302 was confirmed to promote the efficacy of anti-PD-1 therapy. Overall, we developed a novel prognostic model for glioma based on the seven-FRGs signature, which could apply to glioma prognostic and immune status prediction. Besides, SLC1A5 in the model could regulate the proliferation, invasion, ferroptosis and immune state in glioma, and be applied as a prognostic biomarker and potential therapeutic target for glioma.


Diaphanous-related formin subfamily: Novel prognostic biomarkers and tumor microenvironment regulators for pancreatic adenocarcinoma.

  • Bixi Zhang‎ et al.
  • Frontiers in molecular biosciences‎
  • 2022‎

The diaphanous-related formin subfamily includes diaphanous homolog 1 (DIAPH1), DIAPH2, and DIAPH3. DIAPHs play a role in the regulation of actin nucleation and polymerization and in microtubule stability. DIAPH3 also regulates the assembly and bipolarity of mitotic spindles. Accumulating evidence has shown that DIAPHs are anomalously regulated during malignancy. In this study, we reviewed The Cancer Genome Atlas database and found that DIAPHs are abundantly expressed in pancreatic adenocarcinoma (PAAD). Furthermore, we analyzed the gene alteration profiles, protein expression, prognosis, and immune reactivity of DIAPHs in PAAD using data from several well-established databases. In addition, we conducted gene set enrichment analysis to investigate the potential mechanisms underlying the roles of DIAPHs in the carcinogenesis of PAAD. Finally, we performed the experimental validation of DIAPHs expression in several pancreatic cancer cell lines and tissues of patients. This study demonstrated significant correlations between DIAPHs expression and clinical prognosis, oncogenic signature gene sets, T helper 2 cell infiltration, plasmacytoid dendritic cell infiltration, myeloid-derived suppressor cell infiltration, ImmunoScore, and immune checkpoints in PAAD. These data may provide important information regarding the role and mechanisms of DIAPHs in tumorigenesis and PAAD immunotherapy.


Microbial community and extracellular polymeric substances analysis of anaerobic granular sludge exposed to selenate, cadmium and zinc.

  • Taotao Zeng‎ et al.
  • Microbial biotechnology‎
  • 2023‎

The microbial community and extracellular polymeric substances composition of anaerobic granular sludge exposed to selenate (~10 mg/L), cadmium (Cd) and zinc (Zn) (~2 and 5 mg/L) were investigated by high-throughput sequencing and fluorescence excitation emission matrix (FEEM) spectra, respectively. As a response to selenate, Cd and/or Zn exposure, significant fluorescence quenching of fulvic-like acids and humic-like substances was observed. With selenate, Cd and/or Zn in the influent with respective concentrations of 10, 5 and 5 mg/L, the abundance of the phyla Proteobacteria, Firmicutes, Spirochaetae, Cloacimonetes and Synergistetes increased significantly, and the dominant taxa in the anaerobic granular sludge exposed to Se, Cd and/or Zn were Halothiobacillaceae (10.2%), Pseudomonas (8.8%), Synergistaceae (7.7%), Spirochaetaceae (7.2%), Blvii28 wastewater sludge group (6.7%), Telmatospirillum (4.6%), Veillonellaceae (4.3%), Geobacter (4.0%) and Enterobacteriaceae (3.0%). Compared with the inoculum, the abundance of the archaea Methanobacterium and Methanosaeta decreased to below detection limit in the UASB reactor after 116 days exposure to Se, Cd and Zn.


A rapid and simple signature peptides-based method for species authentication of three main commercial Pheretima.

  • Qiao Liu‎ et al.
  • Journal of proteomics‎
  • 2022‎

Pheretima with various activities is a commonly used animal-derived traditional medicine in Asia countries. However, almost half of them are non-pharmacopoeia species in the market due to the similar morphological characteristics between medicinal and non-medicinal species. This study aims to establish an effective method based on signature peptides for species authentication of three main commercial Pheretima, including two major Pheretima species (Amynthas aspergillum, Metaphire vulgaris) and one main adulteration (Metaphire magna). Firstly, the species of 52 batches of commercial Pheretima were authenticated based on DNA barcodes. Secondly, proteomic analysis was performed for protein characterization of three main commercial Pheretima. Furthermore, their signature peptides were screened and validated using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, a simplified sample processing method was developed. Finally, large quantities of commercial Pheretima samples were analyzed for further verifying the feasibility of the signature peptides-based method. The result showed that the established method had a great application potential for authenticity identification of commercial Pheretima. SIGNIFICANCE: The authenticity assessment of medicinal materials is a main issue in the quality control process as deceptive practices could imply severe health risks. In this study, a rapid and simple method based on signature peptides was established for species authentication of three main commercial Pheretima, which can be an effective alternative to complex DNA barcoding and difficult morphological identification, and provided a reference for improvement of Pheretima quality standards.


D-Optimal Design and Development of a Koumine-Loaded Microemulsion for Rheumatoid Arthritis Treatment: In vivo and in vitro Evaluation.

  • Qing Hu‎ et al.
  • International journal of nanomedicine‎
  • 2023‎

Koumine (KME) is the most abundant active ingredient separated from Gelsemium elegans Benth and exhibits a significant therapeutic effect on rheumatoid arthritis (RA). It is a lipophilic compound with poor aqueous solubility, and there is an urgent need to develop novel dosage forms of KME and promote its clinical application for the treatment of RA. The aim of this study was to design and develop KME-loaded microemulsions (KME-MEs) for the effective management of RA.


ISG15 and ISGylation modulates cancer stem cell-like characteristics in promoting tumor growth of anaplastic thyroid carcinoma.

  • Tong Xu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2023‎

Anaplastic thyroid carcinoma (ATC) was a rare and extremely malignant endocrine cancer with the distinct hallmark of high proportion of cancer stem cell-like characteristics. Therapies aiming to cancer stem-like cells (CSCs) were emerging as a new direction in cancer treatment, but targeting ATC CSCs remained challenging, mainly due to incomplete insights of the regulatory mechanism of CSCs. Here, we unveiled a novel role of ISG15 in the modulation of ATC CSCs.


Biodetoxification of Phenolic Inhibitors from Lignocellulose Pretreatment using Kurthia huakuii LAM0618T and Subsequent Lactic Acid Fermentation.

  • Yuejiao Xie‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Phenolic inhibitors generated during alkaline pretreatment of lignocellulosic biomasses significantly hinder bacterial growth and subsequent biofuel and biochemical production. Water rinsing is an efficient method for removing these compounds. Nevertheless, this method often generates a great amount of wastewater, and leads to the loss of solid fiber particles and fermentable sugars. Kurthia huakuii LAM0618T, a recently identified microorganism, was herein shown to be able to efficiently transform phenolic compounds (syringaldehyde, hydroxybenzaldehyde, and vanillin) into less toxic acids. Taking advantage of these properties, a biodetoxification method was established by inoculating K. huakuii LAM0618T into the NH₃/H₂O₂-pretreated unwashed corn stover to degrade phenolic inhibitors and weak acids generated during the pretreatment. Subsequently, 33.47 and 17.91 g/L lactic acid was produced by Bacillus coagulans LA204 at 50 °C through simultaneous saccharification and fermentation (SSF) from 8% (w/w) of NH₃/H₂O₂-pretreated corn stover with or without K. huakuii LAM0618T-biodetoxification, indicating biodetoxification significantly increased lactic acid titer and yield. Importantly, using 15% (w/w) of the NH₃/H₂O₂-pretreated K. huakuii LAM0618T-biodetoxified corn stover as a substrate through fed-batch simultaneous saccharification and fermentation, high titer and high yield of lactic acid (84.49 g/L and 0.56 g/g corn stover, respectively, with a productivity of 0.88 g/L/h) were produced by Bacillus coagulans LA204. Therefore, this study reported the first study on biodetoxification of alkaline-pretreated lignocellulosic material, and this biodetoxification method could replace water rinsing for removal of phenolic inhibitors and applied in biofuel and biochemical production using the alkaline-pretreated lignocellulosic bioresources.


OsRAD17 Is Required for Meiotic Double-Strand Break Repair and Plays a Redundant Role With OsZIP4 in Synaptonemal Complex Assembly.

  • Qing Hu‎ et al.
  • Frontiers in plant science‎
  • 2018‎

The repair of SPO11-dependent double-strand breaks (DSBs) by homologous recombination (HR) ensures the correct segregation of homologous chromosomes. In yeast and human, RAD17 is involved in DNA damage checkpoint control and DSB repair. However, little is known about its function in plants. In this study, we characterized the RAD17 homolog in rice. In Osrad17 pollen mother cells (PMCs), associations between non-homologous chromosomes and chromosome fragmentation were constantly observed. These aberrant chromosome associations were dependent on the formation of programmed DSBs. OsRAD17 interacts with OsRAD1 and the meiotic phenotype of Osrad1 Osrad17 is indistinguishable from the two single mutants which have similar phenotypes, manifesting they could act in the same pathway. OsZIP4, OsMSH5 and OsMER3 are members of ZMM proteins in rice that are required for crossover formation. We found that homologous pairing and synapsis, which was roughly unaffected in Oszip4 and Osrad17 single mutant, was severely disturbed in the Oszip4 Osrad17 double mutant. Similar phenotypes were observed in the Osmsh5 Osrad17 and Osmer3 Osrad1 double mutants, suggesting the cooperation between the checkpoint proteins and ZMM proteins in assuring accurate HR in rice.


Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma.

  • Zanxi Fang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2015‎

MicroRNAs are stable and easy to detect in plasma. The plasma levels of microRNAs are often changed in disease conditions, including cancer. This makes circulating microRNAs a novel class of biomarkers for cancer diagnosis. Analyses of online microRNA data base revealed that expression level of three microRNAs, microRNA-24 (miR-24), microRNA-320a (miR-320a), and microRNA-423-5p (miR-423-5p) were down-regulated in colorectal cancer (CRC). However, whether the plasma level of these three microRNAs can serve as biomarkers for CRC diagnosis and prognosis is not determined.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: