Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization.

  • Zhuang Li‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Glioblastoma (GB) is the most common and highly malignant brain tumor characterized by aggressive growth and resistance to alkylating chemotherapy. Autophagy induction is one of the hallmark effects of anti-GB therapies with temozolomide (TMZ). However, the non-classical form of autophagy, autophagy-based unconventional secretion, also called secretory autophagy and its role in regulating the sensitivity of GB to TMZ remains unclear. There is an urgent need to illuminate the mechanism and to develop novel therapeutic targets for GB.


GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation.

  • Shaoguang Huang‎ et al.
  • PloS one‎
  • 2013‎

The epithelial-to-mesenchymal transition (EMT) of tubular epithelial cells in the adult kidney is one of the key events in renal interstitial fibrosis. Glioma pathogenesis related-2 (GLIPR-2) has been shown to be up-regulated in proximal tubular cells (PTCs) in the fibrotic kidney. However, the biological function of GLIPR-2 remains unknown. In this study, we found that GLIPR-2 expression is elevated in the kidney tissue samples of patients with diabetic nephropathy (DN). Human proximal renal tubular epithelial cells (HK-2 cells) were transfected with pcDNA3.0-GLIPR-2 and selected with G418. To identify the biological function of GLIPR-2, an epithelial-to-mesenchymal transition (EMT) PCR array analysis was performed, and genes that had statistically significantly altered expression levels with more than a two-fold difference compared with the pcDNA3.0-transfected HK-2 cells were considered. Key elements of the EMT process, such as E-cadherin and vimentin, were transcriptionally activated in the pcDNA3.0-GLIPR-2-transfected sublines. In addition, α-SMA gene expression, which is a marker of myofibroblasts, increased in the pcDNA3.0-GLIPR-2-transfected HK-2 cells. The cell migration assay demonstrated that the transfection of HK-2 with GLIPR-2 promoted cell migration following an EMT. Additionally, consistent with the effects of increased EGFR expression levels, we found that the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was highly elevated in the pcDNA3.0-GLIPR-2-transfected group. Our study demonstrates that GLIPR-2 overexpression in HK-2 cells can potentiate EMT-like processes in this cell type through the ERK1/2 signaling pathway. GLIPR-2 may be responsible for the development of renal fibrosis by increasing the accumulation of interstitial fibroblasts.


Upregulation of Myeloid Zinc Finger 1 in Dorsal Root Ganglion via Regulating Matrix Metalloproteinase-2/9 and Voltage-gated Potassium 1.2 Expression Contributes to Complete Freund's Adjuvant-induced Inflammatory Pain.

  • Qin Niu‎ et al.
  • Neuroscience‎
  • 2020‎

Myeloid zinc finger 1 (MZF1) belongs to the Kruppel family of zinc-finger transcription factors. Recent studies have demonstrated that in dorsal root ganglion (DRG) neurons, MZF1 is involved in the development and maintenance of neuropathic pain. However, the role of MZF1 in inflammatory pain still remains unknown. In the present study, the mechanism of MZF1 in chronic inflammatory pain was investigated in rats received an intraplantar injection of complete Freund's adjuvant (CFA). Subsequently, a series of assays including Western blotting, qRT-PCR, immunohistochemistry, and chromatin immunoprecipitation (ChIP) were performed. We found that CFA led to MZF1 upregulation in ipsilateral L4/5 DRGs. Pre- and post-microinjection of MZF1 siRNA into the ipsi-L5 DRG blocked the development of CFA-induced chronic inflammatory pain and alleviated the mechanical allodynia and thermal hyperalgesia in the maintenance phase. CFA also increased MMP-2/9 and Nav1.8 expression but reduced voltage-gated potassium 1.2 (Kv1.2) and Cav1.2 expression in L4/L5 DRGs. Microinjection of MZF1 siRNA into DRG diminished the CFA-induced changes in MMP-2/9 and Kv1.2 expression. However, the expressions of Nav1.8 and Cav1.2 were not changed by the treatment. Double immunofluorescence staining showed that MMP-2/9 and Kv1.2 were co-localized with MZF1 in DRGs. The ChIP-PCR results revealed that MZF1 binds directly to the promoter region of MMP-2/9 gene. Together, the above results imply that upregulation of MZF1 in DRGs might contribute to the development and maintenance of CFA-induced chronic inflammatory pain by regulating MMP-2/9 and Kv1.2 expression. Targeting DRG-localized MZF1 might be a promising therapeutic strategy for the treatment of chronic inflammatory pain in the clinic.


MZF1 in the Dorsal Root Ganglia Contributes to the Development and Maintenance of Neuropathic Pain via Regulation of TRPV1.

  • Fei Xing‎ et al.
  • Neural plasticity‎
  • 2019‎

Previous studies have demonstrated that myeloid zinc finger 1 (MZF1) in the dorsal root ganglion (DRG) participates in neuropathic pain induced by chronic-constriction injury (CCI) via regulation of voltage-gated K+ channels (Kv). Emerging evidence indicates that transient receptor potential vanilloid 1 (TRPV1) is involved in the development and maintenance of neuropathic pain. Although it is known that the transcription of TRPV1 is regulated by Kruppel-like zinc-finger transcription factor 7 (Klf7)-and that the structure of TRPV1 is similar to that of Kv-few studies have systematically investigated the relationship between MZF1 and TRPV1 in neuropathic pain. In the present study, we demonstrated that CCI induced an increase in MZF1 and TRPV1 in lumbar-level 4/5 (L4/5) DRGs at 3 days post-CCI and that this increase was persistent until at least 14 days post-CCI. DRG microinjection of rAAV5-MZF1 into the DRGs of naïve rats resulted in a decrease in paw-withdrawal threshold (PWT) and paw-withdrawal latency (PWL) compared with that of the rAAV5-EGFP group, which started at four weeks and lasted until at least eight weeks after microinjection. Additionally, prior microinjection of MZF1 siRNA clearly ameliorated CCI-induced reduction in PWT and PWL at 3 days post-CCI and lasted until at least 7 days post-CCI. Correspondingly, microinjection of MZF1 siRNA subsequent to CCI alleviated the established mechanical allodynia and thermal hyperalgesia induced by CCI, which occurred at 3 days postinjection and lasted until at least 10 days postinjection. Microinjection of rAAV5-MZF1 increased the expression of TRPV1 in DRGs. Microinjection of MZF1 siRNA diminished the CCI-induced increase of TRPV1, but not P2X7R, in DRGs. These findings suggest that MZF1 may contribute to neuropathic pain via regulation of TRPV1 expression in DRGs.


ADP-Ribosylation Factor Like GTPase 4C (ARL4C) augments stem-like traits of glioblastoma cells by upregulating ALDH1A3.

  • Qian Chen‎ et al.
  • Journal of Cancer‎
  • 2021‎

Glioma cells with stem cell-like properties are crucial for tumor initiation, progression and therapeutic resistance. Therefore, identifying specific factors in regulating stem-like traits is critical for the design of novel glioma therapeutics. Herein, we reported that ADP-Ribosylation Factor Like GTPase 4C (ARL4C) was highly expressed in glioma stem-like cells (GSLCs). GSLCs, determined by the efficiency of sphere formation in vitro and tumor growth in vivo, was increased by overexpression of ARL4C. ARL4C induced the tumorigenesis through ALDH1A3. Analyses of 325 patient specimens showed that ARL4C was highly expressed in glioblastoma (GBM) as compared with lower grade gliomas. In addition, higher level ARL4C expression in glioma was correlated with poorer progression-free survival and overall survival of patients. Therefore, ARL4C may act as a novel prognostic marker and a therapeutic target for GBM.


MiR-338-3p Enhances Ovarian Cancer Cell Sensitivity to Cisplatin by Downregulating WNT2B.

  • Qin Niu‎ et al.
  • Yonsei medical journal‎
  • 2019‎

Chemoresistance is a concern in ovarian cancer patients, in whom survival remains. MicroRNA, a novel class of small RNAs, have frequently been found to be dysregulated in human malignancies and to act as negative regulators of gene expression. This study aimed to explore the function of miR-338-3p in cisplatin resistance in ovarian cancer and potential molecular mechanisms thereof.


HOXA5 is amplified in glioblastoma stem cells and promotes tumor progression by transcriptionally activating PTPRZ1.

  • Zhi-Cheng He‎ et al.
  • Cancer letters‎
  • 2022‎

Although the tumorigenic potential of glioma stem cells (GSCs) is associated with multiple molecular alterations, the gene amplification status of GSCs has not been elucidated. Overexpression of HomeoboxA5 (HOXA5) is associated with increased glioma malignancy. In this study, we identify the gene amplification and protein overexpression of HOXA5 in GSCs and its function in regulating GSC maintenance and the downstream transcriptional effector, to explore the significance of HOXA5 amplification/overexpression for GSC identification and prognostic determination. The HOXA5 gene is significantly amplified in glioblastoma (GBM) and is an independent prognostic factor for predicting worse patient outcomes. Specifically, HOXA5 gene amplification and the resultant protein overexpression are correlated with increased proportions of GSCs and enhanced self-renewal/invasiveness of these cells. Disruption of HOXA5 expression impairs GSC survival and GBM tumor propagation. Mechanistically, HOXA5 directly binds to the promoter region of protein tyrosine phosphatase receptor type Z1 (PTPRZ1), thereby upregulating this gene for GSC maintenance. Suppression of PTPRZ1 largely compromises the pro-tumoral effect of HOXA5 on GSCs. In summary, HOXA5 amplification serves as a genetic biomarker for predicting worse GBM outcome, by enhancing PTPRZ1-mediated GSC survival.


Hypoxia promotes epithelial--mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression.

  • Shao-guang Huang‎ et al.
  • PloS one‎
  • 2013‎

Glioma pathogenesis related-2 (GLIPR-2) belongs to pathogenesis related-1 (PR-1) family whose function remains unknown. In our previous studies, GLIPR-2 was found to be a novel potent stimulator of epithelial-to-mesenchymal transition (EMT) in renal fibrosis which has been classified as type 2 EMT. However, whether GLIPR-2 could induce type 3 EMT in carcinogenesis needs further investigation. In this study, we showed that GLIPR-2 was expressed in hepatocellular carcinoma (HCC) tissues, hypoxia could upregulate the expression of GLIPR-2 in HepG2 and PLC/PRF/5 cells in vitro, overexpression of this protein promoted migration and invasion via EMT, knockdown of GLIPR-2 attenuated migration and invasion of HepG2 and PLC/PRF/5 cells in hypoxia. Moreover, extracellular signal-regulated kinases 1 and 2 (ERK1/2) are positively regulated by GLIPR-2. Taken together, we provide evidence for a hypoxia/GLIPR-2/EMT/migration and invasion axis in HCC cells and it provides novel insights into the mechanism of migration and invasion of hepatocellular carcinoma cells in hypoxia condition.


VDAC2 interacts with PFKP to regulate glucose metabolism and phenotypic reprogramming of glioma stem cells.

  • Kai Zhou‎ et al.
  • Cell death & disease‎
  • 2018‎

Plastic phenotype convention between glioma stem cells (GSCs) and non-stem tumor cells (NSTCs) significantly fuels glioblastoma heterogeneity that causes therapeutic failure. Recent progressions indicate that glucose metabolic reprogramming could drive cell fates. However, the metabolic pattern of GSCs and NSTCs and its association with tumor cell phenotypes remain largely unknown. Here we found that GSCs were more glycolytic than NSTCs, and voltage-dependent anion channel 2 (VDAC2), a mitochondrial membrane protein, was critical for metabolic switching between GSCs and NSTCs to affect their phenotypes. VDAC2 was highly expressed in NSTCs relative to GSCs and coupled a glycolytic rate-limiting enzyme platelet-type of phosphofructokinase (PFKP) on mitochondrion to inhibit PFKP-mediated glycolysis required for GSC maintenance. Disruption of VDAC2 induced dedifferentiation of NSTCs to acquire GSC features, including the enhanced self-renewal, preferential expression of GSC markers, and increased tumorigenicity. Inversely, enforced expression ofVDAC2 impaired the self-renewal and highly tumorigenic properties of GSCs. PFK inhibitor clotrimazole compromised the effect of VDAC2 disruption on glycolytic reprogramming and GSC phenotypic transition. Clinically, VDAC2 expression inversely correlated with glioma grades (Immunohistochemical staining scores of VDAC2 were 4.7 ± 2.8, 3.2 ± 1.9, and 1.9 ± 1.9 for grade II, grade III, and IV, respectively, p < 0.05 for all) and the patients with high expression of VDAC2 had longer overall survival than those with low expression of VDAC2 (p = 0.0008). In conclusion, we demonstrate that VDAC2 is a new glycolytic regulator controlling the phenotype transition between glioma stem cells and non-stem cells and may serves as a new prognostic indicator and a potential therapeutic target for glioma patients.


Circ_0000376, a Novel circRNA, Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1182/NOVA2 Network.

  • Cui Li‎ et al.
  • Cancer management and research‎
  • 2020‎

Hypoxia has been shown to induce the malignant progression of cancer, including non-small cell lung cancer (NSCLC). Circular RNA (circRNA) is considered to be an important regulator of cancer progression. However, the role of a newly discovered circRNA, circ_0000376, in the progression of NSCLC is unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: