Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 140 papers

ISL-1 promotes pancreatic islet cell proliferation by forming an ISL-1/Set7/9/PDX-1 complex.

  • Zhe Yang‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2015‎

Islet-1 (ISL-1), a LIM-homeodomain transcription factor, has been recently found to be essential for promoting postnatal pancreatic islet proliferation. However, the detailed mechanism has not yet been elucidated. In the present study, we investigated the mechanism by which ISL-1 promotes β-cell proliferation through regulation of CyclinD1 in HIT-T15 and NIT-1 cells, as well in rat islet mass. Our results provide the evidence that ISL-1 promotes adult pancreatic islet β-cell proliferation by activating CyclinD1 transcription through cooperation with Set7/9 and PDX-1 to form an ISL-1/Set7/9/PDX-1 complex. This complex functions in an ISL-1-dependent manner, with Set7/9 functioning not only as a histone methyltransferase, which increases the histone H3K4 tri-methylation of the CyclinD1 promoter region, but also an adaptor to bridge ISL-1 and PDX-1, while PDX-1 functions as a RNA pol II binding modulator. Furthermore, the formation of the ISL-1/Set7/9/PDX-1 complex is positively associated with insulin-like growth factor-1 treatment in NIT and HIT-T15 cells in vitro, while may be negatively correlated with age in vivo.


Disruption of IP₃R2-mediated Ca²⁺ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke.

  • Hailong Li‎ et al.
  • Cell calcium‎
  • 2015‎

Inositol trisphosphate receptor (IP3R)-mediated intracellular Ca(2+) increase is the major Ca(2+) signaling pathway in astrocytes in the central nervous system (CNS). Ca(2+) increases in astrocytes have been found to modulate neuronal function through gliotransmitter release. We previously demonstrated that astrocytes exhibit enhanced Ca(2+) signaling in vivo after photothrombosis (PT)-induced ischemia, which is largely due to the activation of G-protein coupled receptors (GPCRs). The aim of this study is to investigate the role of astrocytic IP3R-mediated Ca(2+) signaling in neuronal death, brain damage and behavior outcomes after PT. For this purpose, we conducted experiments using homozygous type 2 IP3R (IP3R2) knockout (KO) mice. Histological and immunostaining studies showed that IP3R2 KO mice were indeed deficient in IP3R2 in astrocytes and exhibited normal brain cytoarchitecture. IP3R2 KO mice also had the same densities of S100β+ astrocytes and NeuN+ neurons in the cortices, and exhibited the same glial fibrillary acidic protein (GFAP) and glial glutamate transporter (GLT-1) levels in the cortices and hippocampi as compared with wild type (WT) mice. Two-photon (2-P) imaging showed that IP3R2 KO mice did not exhibit ATP-induced Ca(2+) waves in vivo in the astrocytic network, which verified the disruption of IP3R-mediated Ca(2+) signaling in astrocytes of these mice. When subject to PT, IP3R2 KO mice had smaller infarction than WT mice in acute and chronic phases of ischemia. IP3R2 KO mice also exhibited less neuronal apoptosis, reactive astrogliosis, and tissue loss than WT mice. Behavioral tests, including cylinder, hanging wire, pole and adhesive tests, showed that IP3R2 KO mice exhibited reduced functional deficits after PT. Collectively, our study demonstrates that disruption of astrocytic Ca(2+) signaling by deleting IP3R2s has beneficial effects on neuronal and brain protection and functional deficits after stroke. These findings reveal a novel non-cell-autonomous neuronal and brain protective function of astrocytes in ischemic stroke, whereby suggest that the astrocytic IP3R2-mediated Ca(2+) signaling pathway might be a promising target for stroke therapy.


Carnosol as a Nrf2 Activator Improves Endothelial Barrier Function Through Antioxidative Mechanisms.

  • Xi Li‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Oxidative stress is the main pathogenesis of diabetic microangiopathy, which can cause microvascular endothelial cell damage and destroy vascular barrier. In this study, it is found that carnosol protects human microvascular endothelial cells (HMVEC) through antioxidative mechanisms. First, we measured the antioxidant activity of carnosol. We showed that carnosol pretreatment suppressed tert-butyl hydroperoxide (t-BHP)-induced cell viability, affected the production of lactate dehydrogenase (LDH) as well as reactive oxygen species (ROS), and increased the produce of nitric oxide (NO). Additionally, carnosol promotes the protein expression of vascular endothelial cadherin (VE-cadherin) to keep the integrity of intercellular junctions, which indicated that it protected microvascular barrier in oxidative stress. Meanwhile, we investigated that carnosol can interrupt Nrf2-Keap1 protein-protein interaction and stimulated antioxidant-responsive element (ARE)-driven luciferase activity in vitro. Mechanistically, we showed that carnosol promotes the expression of heme oxygenase 1(HO-1) and nuclear factor-erythroid 2 related factor 2(Nrf2). It can also promote the expression of endothelial nitric oxide synthase (eNOS). Collectively, our data support the notion that carnosol is a protective agent in HMVECs and has the potential for therapeutic use in the treatments of microvascular endothelial cell injury.


G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3.

  • Qiao Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Ectopic Glucose 6-phosphate dehydrogenase (G6PD) expression plays important role in tumor cell metabolic reprogramming and results in poor prognosis of multiple malignancies. Our previous study indicated that G6PD is overexpressed in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC. However, its role in RCC is still unclear. Here, we demonstrate that G6PD is not only up-regulated in all types of RCC specimens but also displays higher activities in RCC cell lines. G6PD overexpression promoted RCC cell proliferation, altered cell cycle distribution, and enhanced xenografted RCC development. G6PD up-regulated ROS generation by facilitating NADPH-dependent NOX4 activation, which led to increased expression of p-STAT3 and CyclinD1. Enhanced ROS generation rescued the p-STAT3 and CyclinD1 expression reduction in G6PD-knockdown cells, while ROS scavengers reversed the up-regulated p-STAT3 and CyclinD1 expression in G6PD-overexpressing cells. Furthermore, p-STAT3 activated G6PD gene expression via binding to the G6PD promoter, demonstrating that p-STAT3 forms a positive feedback regulatory loop for G6PD overexpression. G6PD expression was up or down-regulated in response to the impact of p-STAT3 activators or inhibitors. Therefore, G6PD may be an effective RCC therapeutic target.


The microprotein Minion controls cell fusion and muscle formation.

  • Qiao Zhang‎ et al.
  • Nature communications‎
  • 2017‎

Although recent evidence has pointed to the existence of small open reading frame (smORF)-encoded microproteins in mammals, their function remains to be determined. Skeletal muscle development requires fusion of mononuclear progenitors to form multinucleated myotubes, a critical but poorly understood process. Here we report the identification of Minion (microprotein inducer of fusion), a smORF encoding an essential skeletal muscle specific microprotein. Myogenic progenitors lacking Minion differentiate normally but fail to form syncytial myotubes, and Minion-deficient mice die perinatally and demonstrate a marked reduction in fused muscle fibres. The fusogenic activity of Minion is conserved in the human orthologue, and co-expression of Minion and the transmembrane protein Myomaker is sufficient to induce cellular fusion accompanied by rapid cytoskeletal rearrangement, even in non-muscle cells. These findings establish Minion as a novel microprotein required for muscle development, and define a two-component programme for the induction of mammalian cell fusion. Moreover, these data also significantly expand the known functions of smORF-encoded microproteins.


The UbL-UBA Ubiquilin4 protein functions as a tumor suppressor in gastric cancer by p53-dependent and p53-independent regulation of p21.

  • Shengkai Huang‎ et al.
  • Cell death and differentiation‎
  • 2019‎

Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.


Long noncoding RNA RP4 functions as a competing endogenous RNA through miR-7-5p sponge activity in colorectal cancer.

  • Mu-Lin Liu‎ et al.
  • World journal of gastroenterology‎
  • 2018‎

To investigate the role of long noncoding RNA (lncRNA) RP4 in colorectal cancer.


The water expelling effect evaluation of 3-O-(2'E,4'Z-decadienoyl)-20-O-acetylingenol and ingenol on H22 mouse hepatoma ascites model and their content differences analysis in Euphorbia kansui before and after stir-fried with vinegar by UPLC.

  • Qiao Zhang‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Malignant ascites (MA) effusion is mainly caused by hepatocellular, ovarian, and breast cancer etc. It has been reported that Euphorbia kansui (EK), the root of Euphorbia kansui S.L.Liou ex S.B.Ho, possessing a therapeutic effect on MA. However, the clinical applications of EK are seriously restricted for its severe toxicity. Although studies demonstrated that vinegar-processing can reduce the toxicity and retain the water expelling effect of EK, its specific mechanism remains unknown.


The Biological-Behavioral Effect Of Neuritin On Non-Small Cell Lung Cancer Vascular Endothelial Cells Via VEGFR And Notch1.

  • Qiao Zhang‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

This study aims to elucidate the biological behavior of Neuritin abnormal expression in pulmonary vascular endothelial cells (VECs) of non-small cell lung cancer (NSCLC), and explore its possible underlying mechanisms.


Anti-breast cancer and toxicity studies of total secondary saponin from Anemone raddeana Rhizome on MCF-7 cells via ROS generation and PI3K/AKT/mTOR inactivation.

  • Dandan Zhang‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

The rhizome of Anemone raddeana Regel (A. raddeana) is a famous traditional Chinese medicine (TCM) recorded in Chinese Pharmacopoeia for the treatment of carbuncle and swelling. Carbuncle swollen is an explanation of tumor in the theory of TCM and softening and resolving hard mass effects are one of the important pharmacological activities of A. raddeana.


Identification and analysis of key lncRNAs in malignant-transformed BEAS-2B cells induced with coal tar pitch by microarray analysis.

  • Zhongqiu Li‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2020‎

This study aims to explore the key and differentially expressed long non-coding RNAs (lncRNAs) and elucidates their possible mechanisms in malignant-transformed Human bronchial epithelial (BEAS-2B) cells induced by coal tar pitch extracts (CTPE). BEAS-2B cells were stimulated with 2.4 μg/ml CTPE, then passaged for three times which were named CTPE1 and then passaged until passage 30 (CTPE30). The results showed that cells of CTPE30 appeared abnormal morphology. Furthermore, migration, clonality and proliferation of cells in CTPE group were significantly increased compared with those in control groups. However, the apoptosis of cells in CTPE group was inhibited. A total of 569 differentially expressed mRNAs and 707 differentially expressed lncRNAs were screened out, among which four lncRNAs were validated and were consistent with the microarray results. 32 target genes were screened out by Co-expression network. The study suggests that differentially expressed lncRNAs may play a potential role in lung carcinogenesis.


Inhibitory mechanism of muscone in liver cancer involves the induction of apoptosis and autophagy.

  • Wenchuan Qi‎ et al.
  • Oncology reports‎
  • 2020‎

Traditionally, musk has been used as an analgesic to treat pain associated with cancer. Hepatocellular carcinoma (HCC) is an aggressive tumor; however, patients with liver cancer that received musk were reported to live longer and have a higher quality of life. Thus, the present study aimed to investigate whether muscone, a macrocyclic compound of musk, demonstrated potential as an anti‑liver cancer drug for the non‑surgical treatment of advanced liver cancer. Briefly, liver cancer cells were treated with muscone and the rates of cellular apoptosis and autophagy were investigated using staining techniques and western blotting. The underlying molecular mechanisms of muscone were evaluated using high‑throughput sequencing and the in vitro effects of muscone were subsequently validated in vivo using a nude mouse model. Muscone increased the rates of apoptosis and autophagy in liver cancer cells; the increase in cellular apoptosis was observed to occur through endoplasmic reticulum stress responses, whereas muscone‑induced autophagy was closely associated with the AMP kinase/mTOR complex 1 signaling pathway. These findings were verified in vivo. Notably, sestrin‑2 expression levels were also significantly decreased in liver cancer tissues compared with paracancerous tissues. In conclusion, the present study suggests that muscone demonstrates potential as an anticancer drug, and the findings of the present study provide the basis for the development of effective anticancer drugs derived from natural compounds.


LncRNA GAS5 regulates redox balance and dysregulates the cell cycle and apoptosis in malignant melanoma cells.

  • Long Chen‎ et al.
  • Journal of cancer research and clinical oncology‎
  • 2019‎

Clinical outcomes for advanced malignant melanoma (MM) are often poor due to tumor invasiveness, metastasis, recurrence, and multidrug resistance.


Development and Application of a LC-MS/MS Method for Simultaneous Quantification of Four First-Line Antituberculosis Drugs in Human Serum.

  • Yunliang Zheng‎ et al.
  • Journal of analytical methods in chemistry‎
  • 2020‎

A simple, rapid, and sensitive liquid chromatography (LC)/mass spectrometry (MS) method was established and validated for simultaneous quantitation of pyrazinamide, isoniazid, rifampicin, and ethambutol in human blood sample. Samples were pretreated by a single-step precipitation with acetonitrile. Chromatographic separation was achieved on XSelecT HSS T3 column by gradient elution with a total run time of 5.0 min. MS detection was performed by a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive electrospray ionization source. Isotope-labeled internal standard, especially rifampicin-D8, was applied to adjust for the loss during sample treatment. The established LC-MS/MS method showed a wide analytical range (pyrazinamide: 1.02∼60.0 μg/mL, isoniazid: 0.152∼10.0 μg/mL, rifampicin: 0.500∼30.0 μg/mL, and ethambutol: 0.0998∼5.99 μg/mL) and a good linearity (r > 0.99 for the four analytes) with acceptable accuracy and precision (90.15%∼104.62% and 94.00%∼104.02% for intra- and interaccuracy, respectively; RSD%: <12.46% and <6.43% for intra- and interprecision, respectively). It also showed excellent recoveries (79.24%∼94.16% for all analytes) and absence of significant matrix effect. This method was successfully applied to the quantification of four first-line antituberculosis (anti-TB) drugs, suggesting its suitability for therapeutic drug monitoring in the clinical practices.


Effect of lncRNA PVT1/miR186/KLF5 Axis on the Occurrence and Progression of Cholangiocarcinoma.

  • Qiang Sun‎ et al.
  • BioMed research international‎
  • 2021‎

This study primarily focused on the effect of the long noncoding RNA (lncRNA) PVT1/miR186/KLF5 axis on the occurrence and progression of cholangiocarcinoma (CCA). miR186 was found both in the lncRNA PVT1 targeting miRNAs and KLF5 targeting miRNAs using bioinformatic analysis. The expression of lncRNA PVT1 and KLF5 in the TFK-1, QBC939, and HuCCT1 cell lines and normal biliary epithelial HIBEpiC cells was detected by RT-qPCR. The significance of lncRNA PVT1 and KLF5 on cell proliferation was analyzed using the MTT assay and clone formation assay in lncRNA PVT1 and KLF5 silencing HuCCT1 cell lines and lncRNA PVT1and KLF5 overexpressing TFK-1 and QBC939 cell lines, respectively. The potential role of lncRNA PVT1 and KLF5 in cell migration was detected using the transwell invasion assay in CCA cell lines and tumor formation assay. Additionally, lncRNA PVT1 and KLF5 were proved to be highly expressed in CCA tissues and cell lines. Silencing and overexpressing of lncRNA PVT1 or KLF5 markedly inhibited or increased the cell proliferation and cell invasion in CCA cell lines, respectively. Silencing and overexpressing of lncRNA PVT1 significantly inhibited and increased the expression of KLF5 in CCA cell lines, respectively. Silencing of lncRNA PVT1 increased the expression of miR186, and silencing of miR186 increased the expression of KLF5 in CCA cell lines. Cotransfection of lncRNA PVT1 and miR186 increased the expression of KLF5 compared with controls. Overall, these results demonstrated that the lncRNA PVT1/miR186/KLF5 axis might exert a key role in the occurrence and progression of CCA, and this axis might provide a new target for treating CCA.


UHRF1 Suppresses HIV-1 Transcription and Promotes HIV-1 Latency by Competing with p-TEFb for Ubiquitination-Proteasomal Degradation of Tat.

  • Taizhen Liang‎ et al.
  • mBio‎
  • 2021‎

HIV-1 remains incurable due to viral reservoirs, which lead to durably latent HIV infection. Identifying novel host factors and deciphering the molecular mechanisms involved in the establishment and maintenance of latency are critical to discover new targets for the development of novel anti-HIV agents. Here, we show that ubiquitin-like with PHD and RING finger domain 1 (UHRF1) modulates HIV-1 5'-long terminal repeat (LTR)-driven transcription of the viral genome as a novel HIV-1 restriction factor. Correspondingly, UHRF1 depletion reversed the latency of HIV-1 proviruses. Mechanistically, UHRF1 competed with positive transcription factor b (p-TEFb) for the binding to the cysteine-rich motifs of HIV-1 Tat via its TTD, PHD, and RING finger domains. Furthermore, UHRF1 mediated K48-linked ubiquitination and proteasomal degradation of Tat in RING-dependent ways, leading to the disruption of Tat/cyclin T1/CDK9 complex and consequential impediment of transcription elongation. In summary, our findings revealed that UHRF1 is an important mediator of HIV-1 latency by controlling Tat-mediated transcriptional activation, providing novel insights on host-pathogen interaction for modulating HIV-1 latency, beneficial for the development of anti-AIDS therapies. IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. In our work, we identified a critical role of host factor ubiquitin-like with PHD and RING finger domain 1 (UHRF1) in HIV-1 latency via the modulation of the viral protein Tat stability. By disrupting the Tat/cyclin T1/CDK9 complex, UHRF1 promotes the suppression of HIV-1 transcription and maintenance of HIV-1 latency. Our findings provide novel insights in controlling Tat expression via host-pathogen interaction for modulating HIV-1 latency. Based on our results, modulating UHRF1 expression or activity by specific inhibitors is a potential therapeutic strategy for latency reversal in HIV-1 patients.


Mechanical Characterization of Glandular Acini Using a Micro-indentation Instrument.

  • Christopher S O'Bryan‎ et al.
  • Bio-protocol‎
  • 2020‎

The linker of nucleoskeleton and cytoskeleton (LINC) complex is responsible for tethering the nucleus to the cytoskeleton, providing a pathway for the cell's nucleus to sense mechanical signals from the environment. Recently, we explored the role of the LINC complex in the development of glandular epithelial acini, such as those found in kidneys, breasts, and other organs. Acini developed with disrupted LINC complexes exhibited a loss of structural integrity, including filling of the lumen structures. As part of our investigation, we performed a mechanical indentation assay of LINC disrupted and undisrupted MDCK II cells using a micro-indentation instrument mounted above a laser-scanning confocal microscope. Through a combination of force measurements acquired from the micro-indentation instrument and contact area measurements taken from fluorescence images, we determined the average contact pressure at which the acini structure ruptured. Here, we provide a detailed description of the design of the micro-indentation instrument, as well as the experimental steps developed to perform these bio-indentation measurements. Furthermore, we discuss the data analysis steps necessary to determine the rupture pressure of the acini structures. While this protocol is focused on the indentation of individual glandular acini, the methods presented here can be adapted to perform a variety of mechanical indentation experiments for both 2D and 3D biological systems.


Case Report: Novel Compound-Heterozygous Variants of SKIV2L Gene that Cause Trichohepatoenteric Syndrome 2.

  • Qiao Zhang‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Background: Trichohepatoenteric syndrome (THES) is a rare disease that mainly causes intractable diarrhea. It is classified into THES1 and THES2, which are associated with the tetratricopeptide repeat domain 37 (TTC37) gene and Ski2-like RNA helicase (SKIV2L) gene, respectively. THES is not very prevalent in China or worldwide, but new cases have increasingly been reported. Methods and Results: Here, we report the clinical and genetic information of a 1.5-month-old girl who was admitted to our hospital due to diarrhea and failure to thrive. Whole-exome sequencing (WES) revealed novel compound-heterozygous variants of the SKIV2L gene, c.3602_3609delAGCGCCTG (p.Q1201Rfs*2), and c.1990A > G (p.T664A) as the causative factors, which were confirmed via Sanger sequencing. Upon continuous feeding with an amino-acid formula through a gastric tube and parenteral nutrition, the patient resumed thriving and her stool frequency decreased. Conclusion: We report a girl carrying novel variants of the SKIV2L gene that cause THES2, thereby providing valuable information on the diagnosis of THES2 and expanding the spectrum of disease-causing SKIV2L mutations.


The sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees.

  • Qiao Zhang‎ et al.
  • Journal of combinatorial optimization‎
  • 2022‎

Network interdiction problems by upgading critical edges/nodes have important applications to reduce the infectivity of the COVID-19. A network of confirmed cases can be described as a rooted tree that has a weight of infectious intensity for each edge. Upgrading edges (nodes) can reduce the infectious intensity with contacts by taking prevention measures such as disinfection (treating the confirmed cases, isolating their close contacts or vaccinating the uninfected people). We take the sum of root-leaf distance on a rooted tree as the whole infectious intensity of the tree. Hence, we consider the sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees (SDIPT-UE/N). The problem (SDIPT-UE) aims to minimize the sum of root-leaf distance by reducing the weights of some critical edges such that the upgrade cost under some measurement is upper-bounded by a given value. Different from the problem (SDIPT-UE), the problem (SDIPT-UN) aims to upgrade a set of critical nodes to reduce the weights of the edges adjacent to the nodes. The relevant minimum cost problem (MCSDIPT-UE/N) aims to minimize the upgrade cost on the premise that the sum of root-leaf distance is upper-bounded by a given value. We develop different norms to measure the upgrade cost. Under weighted Hamming distance, we show the problems (SDIPT-UE/N) and (MCSDIPT-UE/N) are NP-hard by showing the equivalence of the two problems and the 0-1 knapsack problem. Under weighted l 1 norm, we solve the problems (SDIPT-UE) and (MCSDIPT-UE) in O(n) time by transforimg them into continuous knapsack problems. We propose two linear time greedy algorithms to solve the problem (SDIPT-UE) under unit Hamming distance and the problem (SDIPT-UN) with unit cost, respectively. Furthermore, for the the minimum cost problem (MCSDIPT-UE) under unit Hamming distance and the problem (MCSDIPT-UN) with unit cost, we provide two O ( n log n ) time algorithms by the binary search methods. Finally, we perform some numerical experiments to compare the results obtained by these algorithms.


Association of urinary polycyclic aromatic hydrocarbon metabolites and cardiovascular disease among US population: A cross-sectional study.

  • Manthar Ali Mallah‎ et al.
  • Environmental research‎
  • 2022‎

The main aim of the study was to illustrate the association between urinary polycyclic aromatic hydrocarbons (PAHs) and their metabolites with cardiovascular diseases (CVDs), including congestive heart failure (CHF), coronary heart disease (CHD), angina, heart attack, and stroke among the US population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: