Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

The Effects of Composite Alkali-Stored Spent Hypsizygus marmoreus Substrate on Carcass Quality, Rumen Fermentation, and Rumen Microbial Diversity in Goats.

  • Shuiling Qiu‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2024‎

The objective of this study was to investigate the effects of composite alkali-stored spent Hypsizygus marmoreus substrate (SHMS) on carcass quality, rumen fermentation, and rumen microbial diversity in goats. Twenty-four 6-month-old Chuanzhong black goats with similar body weights (20 ± 5 kg) were selected and randomly divided into four groups (n = 6 per group) and received four treatments: 0% (control group, CG); 20% (low-addition group, LG); 30% (moderate-addition group, MG); and 40% (high-addition group, HG) of SHMS-replaced silage corn and oat hay. The experiment lasted for 74 days (including a 14 d adaptation period and a 60 d treatment period). The results of this study showed that MG and HG significantly improved the marble score of goat meat (p < 0.05). The flesh color score significantly increased in each group (p < 0.05). The fat color scores significantly increased in LG and MG (p < 0.05). There were no significant effects on the pH value or shear force of the longissimus dorsi in each group (p > 0.05). The cooking loss in MG was higher than that in CG (p < 0.05). The histidine and tyrosine contents in each group of muscles significantly increased (p < 0.05), with no significant effect on fatty acids (p > 0.05). The rumen pH of MG significantly decreased (p < 0.05), while the total volatile fatty acids (TVFAs) and ammoniacal nitrogen (NH3-N) increased by 44.63% and 54.50%, respectively. The addition of the SHMS altered both the alpha and beta diversities of the rumen microbiota and significant differences in the composition and structure of the four microbial communities. The dominant bacterial phylum in each group were Firmicutes and Bacteroidetes, with Prevotella 1 as the dominant bacterial genus. Correlation analysis revealed that rumen bacteria are closely related to the animal carcass quality and rumen fermentation. In the PICRUSt prediction, 21 significantly different pathways were found, and the correlation network showed a positive correlation between the Prevotella 1 and 7 metabolic pathways, while the C5-branched dibasic acid metabolism was positively correlated with nine bacteria. In summary, feeding goats with an SHMS diet can improve the carcass quality, promote rumen fermentation, and alter the microbial structure. The research results can provide a scientific reference for the utilization of SHMS as feed in the goat industry.


Seasonal Variations in Production Performance, Health Status, and Gut Microbiota of Meat Rabbit Reared in Semi-Confined Conditions.

  • Dingcheng Ye‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2023‎

In this study, we investigated the variations in production performance, health status, and gut microbiota of meat rabbits raised in the semi-confined barn during summer and winter. Compared to summer, rabbits reared in winter possessed significantly higher slaughter weight and carcass weight. Rabbits fed in the summer were more vulnerable to different stressors, which led to increased protein levels of HSP90, IL-1α, IL-1β, IL-2, and concentrations of MDA, but declined GSH and SOD activities. Additionally, significant differences in gut microbial communities were observed. Compared to the winter, rabbits fed in the summer had significantly lower and higher alpha and beta diversity. Both Firmicutes and Verrucomicrobiota were the dominant phyla, and they accounted for greater proportions in the winter than in the summer. At lower microbial taxa levels, several seasonal differentially enriched microbes were identified, such as Akkermansia muciniphila, the Oscillospiraceae NK4A214 group, the Christensenellaceae R-7 group, Alistipes, and Muribaculaceae. Functional capacities linked to microbial proliferation, nutrient metabolism, and environmental adaptive responses exhibited significantly different abundances between summer and winter. Moreover, strong interactions among different indicators were presented. Based on our findings, we not only proposed several potential strategies to ameliorate the undesirable effects of seasonal changes on the productivity and health of meat rabbits but also underscored the directions for future mechanistic studies of adaptation physiology.


Analysis of Rumen Degradation Characteristics, Attached Microbial Community, and Cellulase Activity Changes of Garlic Skin and Artemisia argyi Stalk.

  • Mingming Gu‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2024‎

The purpose of this study was to study the chemical composition, rumen degradation characteristics, surface attached microbial community and cellulase activity of garlic skin (GS) and Artemisia argyi stalk (AS), in order to explain their feeding value. Four 14-month-old healthy Min Dong male goats with permanent rumen fistula were selected as experimental animals. The rumen degradation characteristics of GS and AS were determined by using the nylon bag method, and the bacterial composition, cellulase activity and their relationship on the surface of the two groups were analyzed with high-throughput sequencing of 16S rRNA gene. The results showed that in GS and AS, the effective degradation rate (ED) values of dry matter (DM) were 42.53% and 37.12%, the ED values of crude protein (CP) were 37.19% and 43.38%, the ED values of neutral detergent fiber (NDF) were 36.83% and 36.23%, and the ED values of acid detergent fiber (ADF) were 33.81% and 34.77%. During rumen degradation, the richness and evenness of bacteria attached to the AS surface were higher. At the phylum level, Bacteroidetes and Firmicutes were always the main rumen bacteria in the two groups. At the genus level, fiber-degrading bacteria such as Prevotella, Treponema, and Ruminococcus showed higher levels in GS (p < 0.05). Compared with GS, the activity of β-glucosidase (BG enzyme), endo-β-1,4-glucanase (C1 enzyme), exo-β-1,4-glucanase (Cx enzyme) and neutral xylanase (NEX enzyme) attached to AS surface showed a higher trend. Correlation analysis showed that the relative abundance of Succinivibrio and Rikenellaceae_RC9_gut_group was positively correlated with the rumen degradability of nutrients in GS, and the relative abundance of Christensenellaceae R-7_group, Succinivibrio and Ruminococcus was positively correlated with the rumen degradability of nutrients in AS. The conclusion of this study shows that AS has more potential to become ruminant roughage than GS. In addition, this study also revealed the relationship between cellulase activity and bacteria, which provided new information for us to better analyze the effects of GS and AS on the rumen of ruminants and provided an important theoretical basis for the development and utilization of agricultural by-products.


Effects of Gut Microbiome and Short-Chain Fatty Acids (SCFAs) on Finishing Weight of Meat Rabbits.

  • Shaoming Fang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Understanding how the gut microbiome and short-chain fatty acids (SCFAs) affect finishing weight is beneficial to improve meat production in the meat rabbit industry. In this study, we identified 15 OTUs and 23 microbial species associated with finishing weight using 16S rRNA gene and metagenomic sequencing analysis, respectively. Among these, butyrate-producing bacteria of the family Ruminococcaceae were positively associated with finishing weight, whereas the microbial taxa related to intestinal damage and inflammation showed opposite effects. Furthermore, interactions of these microbial taxa were firstly found to be associated with finishing weight. Gut microbial functional capacity analysis revealed that CAZymes, such as galactosidase, xylanase, and glucosidase, could significantly affect finishing weight, given their roles in regulating nutrient digestibility. GOs related to the metabolism of several carbohydrates and amino acids also showed important effects on finishing weight. Additionally, both KOs and KEGG pathways related to the membrane transportation system and involved in aminoacyl-tRNA biosynthesis and butanoate metabolism could act as key factors in modulating finishing weight. Importantly, gut microbiome explained nearly 11% of the variation in finishing weight, and our findings revealed that a subset of metagenomic species could act as predictors of finishing weight. SCFAs levels, especially butyrate level, had critical impacts on finishing weight, and several finishing weight-associated species were potentially contributed to the shift in butyrate level. Thus, our results should give deep insights into how gut microbiome and SCFAs influence finishing weight of meat rabbits and provide essential knowledge for improving finishing weight by manipulating gut microbiome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: