Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 141 papers

Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells.

  • Ye Zhao‎ et al.
  • BMC cell biology‎
  • 2016‎

Endothelial-mesenchymal transition (EndoMT) is a major source of myofibroblast formation in kidney fibrosis. Our previous study showed a profibrotic role for matrix metalloproteinase 9 (MMP-9) in kidney fibrosis via induction of epithelial-mesenchymal transition (EMT). Inhibition of MMP-9 activity reduced kidney fibrosis in murine unilateral ureteral obstruction. This study investigated whether MMP-9 also plays a role in EndoMT in human glomerular endothelial cells.


Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using V-ATPase generated voltage gradient as the driving force.

  • Xi Zoë Zhong‎ et al.
  • The Journal of physiology‎
  • 2016‎

SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation. P2X4 receptors act as lysosomal ion channels activated by luminal ATP. SLC17A9-mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V-ATPase inhibitor. SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V-ATPase as the driving force to transport ATP into the lysosome to activate P2X4.


Cystatin C Expression is Promoted by VEGFA Blocking, With Inhibitory Effects on Endothelial Cell Angiogenic Functions Including Proliferation, Migration, and Chorioallantoic Membrane Angiogenesis.

  • Zhenkun Li‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background Vascular development, including vasculogenesis and angiogenesis, is involved in many diseases. Cystatin C ( CST 3) is a commonly used marker of renal dysfunction, and we have previously reported that its expression level is associated with variations in the gerbil circle of Willis. Thus, we hypothesized that CST 3 may affect endothelial function and angiogenic capacity. In the current study, we sought to determine the influence of CST 3 on endothelial function and explore its potential regulatory pathway. Methods and Results We analyzed CST 3 and vascular endothelial growth factor A ( VEGFA) levels in different developmental stages of gerbils using ELISA s and immunofluorescence (to examine the relationship between CST 3 and VEGFA . We used a real-time cell analyzer, cytotoxicity assays, and the chorioallantoic membrane assay to investigate the function of CST 3 in endothelial cells and the chorioallantoic membrane. Additionally, we used Western blotting to explore the downstream targets of CST 3. The expression levels of both CST 3 and VEGFA were at their highest on day 10 of the embryonic stage. CST 3 inhibited endothelial cell proliferation, migration, tube formation, and permeability, as well as vascular development in the chorioallantoic membrane. Blocking of VEGFA dose-dependently increased CST 3 expression in arterial and venous endothelial cells. Furthermore, overexpression and knockdown of CST 3 significantly affected the protein levels of p53 and CAPN10 (calpain 10), suggesting that CST 3 might play a role in vascular development through these proteins. Conclusions CST 3 may be associated with vascular development and angiogenesis, and this effect could be promoted by blocking VEGFA .


Autophagy Regulation of Metabolism Is Required for CD8+ T Cell Anti-tumor Immunity.

  • Lindsay DeVorkin‎ et al.
  • Cell reports‎
  • 2019‎

Autophagy is a cell survival process essential for the regulation of immune responses to infections. However, the role of T cell autophagy in anti-tumor immunity is less clear. Here, we demonstrate a cell-autonomous role for autophagy in the regulation of CD8+ T-cell-mediated control of tumors. Mice deficient for the essential autophagy genes Atg5, Atg14, or Atg16L1 display a dramatic impairment in the growth of syngeneic tumors. Moreover, T cells lacking Atg5 have a profound shift to an effector memory phenotype and produce greater amounts of interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α). Mechanistically, Atg5-/- CD8+ T cells exhibit enhanced glucose metabolism that results in alterations in histone methylation, increases in H3K4me3 density, and transcriptional upregulation of both metabolic and effector target genes. Nonetheless, glucose restriction is sufficient to suppress Atg5-dependent increases in effector function. Thus, autophagy-dependent changes in CD8+ T cell metabolism directly regulate anti-tumor immunity.


The Identification of Potential Biomarkers and Biological Pathways in Prostate Cancer.

  • Zhengshuai Song‎ et al.
  • Journal of Cancer‎
  • 2019‎

Purpose: The present study aims to explore the potential mechanisms contributing to prostate cancer (PCa), screen the hub genes, and identify potential biomarkers and correlated pathways of PCa progression. Methods: The PCa gene expression profile GSE3325 was operated to analyze the differentially expressed genes (DEGs). DAVID was used to evaluate Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was constructed to visualize interactions of the hub genes. The prognostic and diagnostic analysis of these hub genes was carried out to evaluate their potential effects on PCa. Results: A total of 847 DEGs were identified (427 upregulated genes and 420 downregulated genes). Meanwhile, top15 hub genes were showed. GO analysis displayed that the DEGs were mainly enriched in cell cycle, DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest and proteinaceous extracellular matrix. KEGG analysis indicated the DEGs were enriched in the p53 signaling pathway and cell cycle pathway. The GO and KEGG enrichment analyses for the DEGs disclosed important biological features of PCa. PPI network showed the interaction of top 15 hub genes. Gene Set Enrichment Analysis (GSEA) revealed that some of the hub genes were associated with biochemical recurrence (BCR) and metastasis of PCa. Some top hub genes were distinctive and new discoveries compared with that of the existing associated researches. Conclusions: Our analysis revealed that the changes of cell cycle and p53 signaling pathway are two major signatures of PCa. CENPA, KIF20A and CDCA8 might promote the tumorigenesis and progression of PCa, especially in BCR and metastasis, which could be novel therapeutic targets and biomarkers for diagnosis, prognosis of PCa.


Haemophilus parasuis α-2,3-sialyltransferase-mediated lipooligosaccharide sialylation contributes to bacterial pathogenicity.

  • Huan Wang‎ et al.
  • Virulence‎
  • 2018‎

Bacterial lipooligosaccharide (LOS) is an important virulence-associated factor, and its sialylation largely confers its ability to mediate cell adhesion, invasion, inflammation, and immune evasion. Here, we investigated the function of the Haemophilus parasuis α-2,3-sialyltransferase gene, lsgB, which determines the terminal sialylation of LOS, by generating a lsgB deletion mutant as well as a complementation strain. Our data indicate a direct effect of lsgB on LOS sialylation and reveal important roles of lsgB in promoting the pathogenicity of H. parasuis, including adhesion to and invasion of porcine cells in vitro, bacterial load and survival in vivo, as well as a contribution to serum resistance. These observations highlight the function of lsgB in mediating LOS sialylation and more importantly its role in H. parasuis infection. These findings provide a more profound understanding of the pathogenic mechanism of this disease-causing bacterium.


The central role of EED in the orchestration of polycomb group complexes.

  • Qi Cao‎ et al.
  • Nature communications‎
  • 2014‎

Polycomb repressive complexes 1 and 2 (PRC1 and 2) play a critical role in the epigenetic regulation of transcription during cellular differentiation, stem cell pluripotency and neoplastic progression. Here we show that the polycomb group protein EED, a core component of PRC2, physically interacts with and functions as part of PRC1. Components of PRC1 and PRC2 compete for EED binding. EED functions to recruit PRC1 to H3K27me3 loci and enhances PRC1-mediated H2A ubiquitin E3 ligase activity. Taken together, we suggest an integral role for EED as an epigenetic exchange factor coordinating the activities of PRC1 and 2.


The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex.

  • John R Prensner‎ et al.
  • Nature genetics‎
  • 2013‎

Prostate cancers remain indolent in the majority of individuals but behave aggressively in a minority. The molecular basis for this clinical heterogeneity remains incompletely understood. Here we characterize a long noncoding RNA termed SChLAP1 (second chromosome locus associated with prostate-1; also called LINC00913) that is overexpressed in a subset of prostate cancers. SChLAP1 levels independently predict poor outcomes, including metastasis and prostate cancer-specific mortality. In vitro and in vivo gain-of-function and loss-of-function experiments indicate that SChLAP1 is critical for cancer cell invasiveness and metastasis. Mechanistically, SChLAP1 antagonizes the genome-wide localization and regulatory functions of the SWI/SNF chromatin-modifying complex. These results suggest that SChLAP1 contributes to the development of lethal cancer at least in part by antagonizing the tumor-suppressive functions of the SWI/SNF complex.


BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases.

  • Xi Zoë Zhong‎ et al.
  • Scientific reports‎
  • 2016‎

Efficient lysosomal Ca2+ release plays an essential role in lysosomal trafficking. We have recently shown that lysosomal big conductance Ca2+-activated potassium (BK) channel forms a physical and functional coupling with the lysosomal Ca2+ release channel Transient Receptor Potential Mucolipin-1 (TRPML1). BK and TRPML1 forms a positive feedback loop to facilitate lysosomal Ca2+ release and subsequent lysosome membrane trafficking. However, it is unclear whether the positive feedback mechanism is common for other lysosomal storage diseases (LSDs) and whether BK channel agonists rescue abnormal lysosomal storage in LSDs. In this study, we assessed the effect of BK agonist, NS1619 and NS11021 in a number of LSDs including NPC1, mild cases of mucolipidosis type IV (ML4) (TRPML1-F408∆), Niemann-Pick type A (NPA) and Fabry disease. We found that TRPML1-mediated Ca2+ release was compromised in these LSDs. BK activation corrected the impaired Ca2+ release in these LSDs and successfully rescued the abnormal lysosomal storage of these diseases by promoting TRPML1-mediated lysosomal exocytosis. Our study suggests that BK channel activation stimulates the TRPML1-BK positive reinforcing loop to correct abnormal lysosomal storage in LSDs. Drugs targeting BK channel represent a potential therapeutic approach for LSDs.


Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells.

  • Thian Kui Tan‎ et al.
  • The American journal of pathology‎
  • 2010‎

As a rich source of pro-fibrogenic growth factors and matrix metalloproteinases (MMPs), macrophages are well-placed to play an important role in renal fibrosis. However, the exact underlying mechanisms and the extent of macrophage involvement are unclear. Tubular cell epithelial-mesenchymal transition (EMT) is an important contributor to renal fibrosis and MMPs to induction of tubular cell EMT. The aim of this study was to investigate the contribution of macrophages and MMPs to induction of tubular cell EMT. The murine C1.1 tubular epithelial cell line and primary tubular epithelial cells were cultured in activated macrophage-conditioned medium (AMCM) derived from lipopolysaccharide-activated J774 macrophages. MMP-9, but not MMP-2 activity was detected in AMCM. AMCM-induced tubular cell EMT in C1.1 cells was inhibited by broad-spectrum MMP inhibitor (GM6001), MMP-2/9 inhibitor, and in AMCM after MMP-9 removal by monoclonal Ab against MMP-9. AMCM-induced EMT in primary tubular epithelial cells was inhibited by MMP-2/9 inhibitor. MMP-9 induced tubular cell EMT in both C1.1 cells and primary tubular epithelial cells. Furthermore, MMP-9 induced tubular cell EMT in C1.1 cells to an extent similar to transforming growth factor-beta. Transforming growth factor-beta-induced tubular cell EMT in C1.1 cells was inhibited by MMP-2/9 inhibitor. Our in vitro study provides evidence that MMPs, specifically MMP-9, secreted by effector macrophages can induce tubular cell EMT and thereby contribute to renal fibrosis.


BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1.

  • Sen Zhu‎ et al.
  • Nature communications‎
  • 2018‎

BMI1, a polycomb group (PcG) protein, plays a critical role in epigenetic regulation of cell differentiation and proliferation, and cancer stem cell self-renewal. BMI1 is upregulated in multiple types of cancer, including prostate cancer. As a key component of polycomb repressive complex 1 (PRC1), BMI1 exerts its oncogenic functions by enhancing the enzymatic activities of RING1B to ubiquitinate histone H2A at lysine 119 and repress gene transcription. Here, we report a PRC1-independent role of BMI1 that is critical for castration-resistant prostate cancer (CRPC) progression. BMI1 binds the androgen receptor (AR) and prevents MDM2-mediated AR protein degradation, resulting in sustained AR signaling in prostate cancer cells. More importantly, we demonstrate that targeting BMI1 effectively inhibits tumor growth of xenografts that have developed resistance to surgical castration and enzalutamide treatment. These results suggest that blocking BMI1 alone or in combination with anti-AR therapy can be more efficient to suppress prostate tumor growth.


Overexpression of PLIN2 is a prognostic marker and attenuates tumor progression in clear cell renal cell carcinoma.

  • Qi Cao‎ et al.
  • International journal of oncology‎
  • 2018‎

Clear cell renal cell carcinoma (ccRCC) is the most common renal malignancy in adults, the incidence of which continues to increase. The lipid droplet protein perilipin 2 (PLIN2), which was originally considered an RNA transcript, is markedly expressed during adipocyte differentiation. In addition, it has been observed to be elevated in numerous types of cancer, including ccRCC; however, its essential function remains unclear in ccRCC. The present study examined the expression of PLIN2 in ccRCC, and aimed to determine the association between PLIN2 expression and patient survival. The present study mined the transcriptional, clinicopathological and survival data of PLIN2 in patients with ccRCC through The Cancer Genome Atlas. The expression levels of PLIN2 were also detected in human ccRCC tissues and cell lines by western blotting and immunohistochemistry, and its biological role was identified by functional analysis. The results demonstrated that PLIN2 was predominantly elevated in RCC tissues and cells. In addition, the expression levels of PLIN2 were significantly associated with various clinicopathological factors, and high PLIN2 expression was associated with a good prognosis. The results of a multivariate analysis demonstrated that high PLIN2 expression was an independent prognostic indicator of overall survival (hazard ratio, 0.586; P=0.001). Furthermore, PLIN2 knockdown promoted proliferation of ccRCC cells, and enhanced cell invasion and migration. These results suggested that PLIN2 may be considered a novel prognostic factor in ccRCC and a specific diagnostic indicator for patients with ccRCC. Furthermore, it could be a potential novel target for the clinical treatment of ccRCC.


Serum Midkine, estimated glomerular filtration rate and chronic kidney disease-related events in elderly women: Perth Longitudinal Study of Aging Women.

  • Jeffrey Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Midkine (MDK), a heparin-binding growth factor cytokine, is involved in the pathogenesis of kidney diseases by augmenting leukocyte trafficking and activation. Animal models and small case control studies have implicated MDK as a pathological biomarker in chronic kidney diseases (CKD), however this is yet to be confirmed in prospective human studies. In a prospective study of 499 elderly, predominantly Caucasian women aged over 70 years the association between serum MDK collected in 1998, and renal function change and the risk of CKD-related hospitalisations and deaths at 5 and 14.5 years, respectively, was examined. Baseline serum MDK was not associated with 5-year change in estimated glomerular filtration rate using the CKD Epidemiology Collaboration creatinine and cystatin C equation (Standardised β = - 0.09, 95% confidence interval - 3.76-0.48, p = 0.129), 5-year rapid decline in renal function (odds ratio = 0.97, 95% confidence interval 0.46-2.02, p = 0.927) or the risk of 14.5-year CKD-related hospitalisations and deaths (hazard ratio = 1.27, 95% confidence interval .66-2.46, p = 0.470) before or after adjusting for major risk factors. In conclusion, in this cohort of elderly women with normal or mildly impaired renal function, serum MDK was not associated with renal function change or future CKD-related hospitalisations and deaths, suggesting that MDK may not be an early biomarker for progression of CKD.


The temporal order of fluctuations in atopic disease symptoms and attention-deficit/hyperactivity disorder symptoms: a time-series study in ADHD patients.

  • Jurjen van der Schans‎ et al.
  • European child & adolescent psychiatry‎
  • 2020‎

In a recent meta-analysis, we found that atopic diseases, like asthma and allergic rhinitis, occur more frequently prior to the onset of attention-deficit/hyperactivity disorder (ADHD). Our aim was to determine the temporal order of the association between daily fluctuations in atopic disease symptoms and in ADHD symptoms in individual participants. In this observational study among 21 participants, age 7-16 years, we performed a replicated time-series analysis of symptom fluctuations in asthma and/or allergic rhinitis and ADHD. Data were collected through parents who filled in a daily online questionnaire during up to 50 days. In each individual, we investigated the temporal order of fluctuations in atopic disease symptoms and ADHD symptoms using a vector autoregressive (VAR) model while using sleep problems and medication use as covariates. For 16 out of 21 participants, we constructed a VAR model. For a majority of the participants, significant associations were detected between atopic disease symptoms and ADHD symptoms. The results were heterogeneous; the direction, sign, and timing of the relationship between ADHD, atopy, sleep problems, and medication use varied between individuals. This study provides additional evidence that the symptom expression of atopy and ADHD are related. However, the connection between both diseases in children is found to be heterogeneous within our study population.


Cost-Effectiveness of Treatments in Children With Attention-Deficit/Hyperactivity Disorder: A Continuous-Time Markov Modeling Approach.

  • Roel D Freriks‎ et al.
  • MDM policy & practice‎
  • 2019‎

Objectives. This study aimed to assess the cost-effectiveness of treatments for attention-deficit/hyperactivity disorder (ADHD) in children through prevention of serious delinquent behavior. Cost-effectiveness was assessed in net-monetary benefit (NMB). Methods. To evaluate the three major forms of ADHD treatment (medication management, behavioral treatment, and the combination thereof) relative to community-delivered treatment (control condition), we used data from 448 children, aged 7 to 10, who participated in the National Institute of Mental Health's Multimodal Treatment Study of Children with ADHD. We developed a three-state continuous-time Markov model (no delinquency, minor to moderate delinquency, serious delinquency) to extrapolate the results 10 years beyond the 14-month trial period at a 3% discount rate. Serious delinquency was considered an absorbing state to enable assessment in life-years (LYs) of serious delinquent behavior prevented. The willingness-to-pay (WTP) threshold was set equal to the annual cost associated with serious delinquency in children with ADHD of $12,370. Results. Modeled and observed outcomes matched closely with a mean difference of 6.9% in LYs of serious delinquent behavior prevented. The economic evaluation revealed a NMB of $95,449, $88,553, $90,536 and $98,660 for medication management, behavioral treatment, combined treatment, and routine community care, respectively. Estimates remained stable after linearly increasing the WTP threshold between $0 and $50,000 in the deterministic sensitivity analyses. Conclusions. This study assessed the cost-effectiveness of treatments for ADHD in children using continuous-time Markov modeling. We show that treatment evaluation in broader societal outcomes is essential for policy makers, as the three major forms of ADHD treatment turned out to be inferior to the control condition.


Knockdown of HSDL2 inhibits lung adenocarcinoma progression via down-regulating AKT2 expression.

  • Yujia Shi‎ et al.
  • Bioscience reports‎
  • 2020‎

The aims of the present study are to investigate the role of hydroxysteroid dehydrogenase-like 2 (HSDL2) in the progression of lung adenocarcinoma and illuminate the underlying molecular mechanisms. ShRNA targeting HSDL2 gene (siHSDL2) was utilized to knockdown (KD) HSDL2 expression. In vitro and in vivo experiments were carried out to investigate the effect of siHSDL2 on the progression of lung adenocarcinoma. Microarray hybridization and gene expression analysis were used to investigate effect of siHSDL2 on mRNA expression profile in lung cancer cell line H1299. Our data demonstrated that HSDL2 was up-regulated in lung adenocarcinoma tissue samples (P<0.001). Patients with high HSDL2 expression in cancer tissues had a worse overall survival (P<0.001). HSDL2 KD not only inhibited the proliferation, cell cycle, apoptosis, clone-formation, invasion and migration of lung adenocarcinoma cells in vitro (P<0.05), but also suppressed the growth and metastasis in vivo (P<0.05). HSDL2 KD resulted in up-regulation of 681 genes and down-regulation of 276 genes. HSDL2 KD down-regulated the protein expression and phosphorylation of protein kinase B β (AKT2) (P<0.001 and P<0.001, respectively) and protein expression of baculoviral IAP repeat-containing 3 (BIRC3; P=0.001), and up-regulated the phosphorylation of ERK (P<0.001). Rescue experiments showed that AKT2 overexpression reversed the suppression effect of siHSDL2 on cell proliferation (P<0.001), invasion (P<0.001) and migration (P<0.001) significantly. HSDL2 functions as an oncogene to promote the growth and metastasis of lung adenocarcinoma via promoting the expression of AKT2.


IMPDH1/YB-1 Positive Feedback Loop Assembles Cytoophidia and Represents a Therapeutic Target in Metastatic Tumors.

  • Hailong Ruan‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2020‎

Recently, cytoophidium, a nonmembrane-bound intracellular polymeric structure, has been shown to exist in various organisms, including tumor tissues, but its function and mechanism have not yet been examined. Examination of cytoophidia-assembled gene inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase (CTPS) mRNA levels showed that only IMPDH1 levels were significantly higher in the clear cell renal cell carcinoma (ccRCC). IMPDH1 was positively correlated with the metastasis-related gene Y-box binding protein 1 (YB-1) and served as an independent prognostic factor in ccRCC. Kaplan-Meier analysis indicated that patients with tumors that expressed high IMPDH1 levels had a shorter overall survival (OS) and disease-free survival (DFS). Furthermore, detection of cytoophidia by immunofluorescence staining in ccRCC tissues showed that IMPDH1-assembled cytoophidia are positively associated with tumor metastasis. Mechanistically, IMPDH1 and YB-1 formed an autoregulatory positive feedback loop: IMPDH1 maintained YB-1 protein stabilization; YB-1 induced IMPDH1 expression by binding to the IMPDH1 promoter motif. Functionally, IMPDH1-assembled cytoophidia physically interacted with YB-1 and translocated YB-1 into the cell nucleus, thus correlating with ccRCC metastasis. Our findings provide the first solid theoretical rationale for targeting the IMPDH1/YB-1 axis to improve metastatic renal cancer treatment.


cis-4-[18F]fluoro-L-proline Molecular Imaging Experimental Liver Fibrosis.

  • Qi Cao‎ et al.
  • Frontiers in molecular biosciences‎
  • 2020‎

Introduction: Early-stage liver fibrosis is potentially reversible, but difficult to diagnose. Clinical management would be enhanced by the development of a non-invasive imaging technique able to identify hepatic injury early, before end-stage fibrosis ensues. The analog of the amino acid proline, cis-4-[18F]fluoro-L-proline ([18F]fluoro-proline), which targets collagenogenesis in hepatic stellate cells (HSC), was used to detect fibrosis. Methods: Acute steatohepatitis was induced in experimental animals by liquid ethanol diet for 8 weeks, intra-gastric binge feedings every 10th day along with lipopolysaccharide (LPS) injection. The control animals received control diet for 8 weeks and an equivalent volume of saline on the same schedule as the acute steatohepatitis model. First, in vitro cellular experiments were carried out to assess [3H]proline uptake by HSC, hepatocytes and Kupffer cells derived from rats with acute steatohepatitis (n = 14) and controls (n = 14). Next, ex vivo liver experiments were done to investigate unlabeled proline-mediated collagen synthesis and its associated proline transporter expression in acute steatohepatitis (n = 5) and controls (n = 5). Last, in vivo dynamic and static [18F]fluoro-proline micro-PET/CT imaging was performed in animal models of acute steatohepatitis (n = 7) and control (n = 7) mice. Results: [3H]proline uptake was 5-fold higher in the HSCs of steatohepatitis rats than controls after incubation of up to 60 min. There was an excellent correlation between [3H]proline uptake and liver collagen expression (r-value > 0.90, p < 0.05). Subsequent liver tissue studies demonstrated 2-3-fold higher proline transporter expression in acute steatohepatitis animals than in controls, and proline-related collagen synthesis was blocked by this transporter inhibitor. In vivo micro-PET/CT studies with [18F]fluoro-proline showed 2-3-fold higher uptake in the livers of acute steatohepatitis mice than in controls. There was an excellent correlation between [18F]fluoro-proline uptake and liver collagen expression in the livers of acute steatohepatitis mice (r-value = 0.97, p < 0.001). Conclusion: [18F]fluoro-proline localizes in the liver and correlates with collagenogenesis in acute steatohepatitis with a signal intensity that is sufficiently high to allow imaging with micro-PET/CT. Thus, [18F]fluoro-proline could serve as a PET imaging biomarker for detecting early-stage liver fibrosis.


Broad genic repression domains signify enhanced silencing of oncogenes.

  • Dongyu Zhao‎ et al.
  • Nature communications‎
  • 2020‎

Cancers result from a set of genetic and epigenetic alterations. Most known oncogenes were identified by gain-of-function mutations in cancer, yet little is known about their epigenetic features. Through integrative analysis of 11,596 epigenomic profiles and mutations from >8200 tumor-normal pairs, we discover broad genic repression domains (BGRD) on chromatin as an epigenetic signature for oncogenes. A BGRD is a widespread enrichment domain of the repressive histone modification H3K27me3 and is further enriched with multiple other repressive marks including H3K9me3, H3K9me2, and H3K27me2. Further, BGRD displays widespread enrichment of repressed cis-regulatory elements. Shortening of BGRDs is linked to derepression of transcription. BGRDs at oncogenes tend to be conserved across normal cell types. Putative tumor-promoting genes and lncRNAs defined using BGRDs are experimentally verified as required for cancer phenotypes. Therefore, BGRDs play key roles in epigenetic regulation of cancer and provide a direction for mutation-independent discovery of oncogenes.


CCN2/CTGF promotes liver fibrosis through crosstalk with the Slit2/Robo signaling.

  • Liya Pi‎ et al.
  • Journal of cell communication and signaling‎
  • 2023‎

Liver fibrosis is the common outcome of many chronic liver diseases, resulting from altered cell-cell and cell-matrix interactions that promote hepatic stellate cell (HSC) activation and excessive matrix production. This study aimed to investigate functions of cellular communication network factor 2 (CCN2)/Connective tissue growth factor (CTGF), an extracellular signaling modulator of the CYR61/CTGF/Nov (CCN) family, in liver fibrosis. Tamoxifen-inducible conditional knockouts in mice and hepatocyte-specific deletion of this gene in rats were generated using the Cre-lox system. These animals were subjected to peri-central hepatocyte damage caused by carbon tetrachloride. Potential crosstalk of this molecule with a new profibrotic pathway mediated by the Slit2 ligand and Roundabout (Robo) receptors was also examined. We found that Ccn2/Ctgf was highly upregulated in periportal hepatocytes during carbon tetrachloride-induced hepatocyte damage, liver fibrosis and cirrhosis in mice and rats. Overexpression of this molecule was observed in human hepatocellular carcinoma (HCC) that were surrounded with fibrotic cords. Deletion of the Ccn2/Ctgf gene significantly reduced expression of fibrosis-related genes including Slit2, a smooth muscle actin (SMA) and Collagen type I during carbon tetrachloride-induced liver fibrosis in mice and rats. In addition, Ccn2/Ctgf and its truncated mutant carrying the first three domains were able to interact with the 7th -9th epidermal growth factor (EGF) repeats and the C-terminal cysteine knot (CT) motif of Slit2 protein in cultured HSC and fibrotic murine livers. Ectopic expression of Ccn2/Ctgf protein upregulated Slit2, promoted HSC activation, and potentiated fibrotic responses following chronic intoxication by carbon tetrachloride. Moreover, Ccn2/Ctgf and Slit2 synergistically enhanced activation of phosphatidylinositol 3-kinase (PI3K) and AKT in primary HSC, whereas soluble Robo1-Fc chimera protein could inhibit these activities. These observations demonstrate conserved cross-species functions of Ccn2/Ctgf protein in rodent livers. This protein can be induced in hepatocytes and contribute to liver fibrosis. Its novel connection with the Slit2/Robo signaling may have therapeutic implications against fibrosis in chronic liver disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: