Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

IL-1β-MyD88-mTOR Axis Promotes Immune-Protective IL-17A+Foxp3+ Cells During Mucosal Infection and Is Dysregulated With Aging.

  • Natarajan Bhaskaran‎ et al.
  • Frontiers in immunology‎
  • 2020‎

CD4+Foxp3+Tregs maintain immune homeostasis, but distinct mechanisms underlying their functional heterogeneity during infections are driven by specific cytokine milieu. Here we show that MyD88 deletion in Foxp3+ cells altered their function and resulted in increased fungal burden and immunopathology during oral Candida albicans (CA) challenge. Excessive inflammation due to the absence of MyD88 in Tregs coincided with a reduction of the unique population of IL-17A expressing Foxp3+ cells (Treg17) and an increase in dysfunctional IFN-γ+/Foxp3+ cells (TregIFN-γ) in infected mice. Failure of MyD88-/- Tregs to regulate effector CD4+ T cell functions correlated with heightened levels of IFN-γ in CD4+ T cells, as well as increased infiltration of inflammatory monocytes and neutrophils in oral mucosa in vivo. Mechanistically, IL-1β/MyD88 signaling was required for the activation of IRAK-4, Akt, and mTOR, which led to the induction and proliferation of Treg17 cells. In the absence of IL-1 receptor signaling, Treg17 cells were reduced, but IL-6-driven expansion of TregIFN-γ cells was increased. This mechanism was physiologically relevant during Candida infection in aged mice, as they exhibited IL-1 receptor/MyD88 defect in Foxp3+ cells, loss of p-mTORhighTreg17 cells and reduced levels of IL-1β in oral mucosa, which coincided with persistent tongue inflammation. Concurrent with Treg dysfunction, aging was associated with increased CD4+ T cell hyperactivation and heightened levels of IL-6 in mice and humans in oral mucosa in vivo. Taken together, our data identify IL-1β/MyD88/Treg axis as a new component that modulates inflammatory responses in oral mucosa. Also, dysregulation of this axis in an aging immune system may skew host defense towards an immunopathological response in mucosal compartments.


Beta-defensin index: A functional biomarker for oral cancer detection.

  • Santosh K Ghosh‎ et al.
  • Cell reports. Medicine‎
  • 2024‎

There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry. The proportion of hBD-3/hBD-2 levels in non-invasively collected lesional cells compared to contralateral normal cells, obtained by ELISA, generates the beta-defensin index (BDI). Proof-of-principle and blinded discovery studies demonstrate that BDI discriminates OSCC from benign lesions. A multi-center validation study shows sensitivity and specificity values of 98.2% (95% confidence interval [CI] 90.3-99.9) and 82.6% (95% CI 68.6-92.2), respectively. A proof-of-principle study shows that BDI is adaptable to a point-of-care assay using microfluidics. We propose that BDI may fulfill a major unmet need in low-socioeconomic countries where pathology services are lacking.


Neurog2 controls the leading edge of neurogenesis in the mammalian retina.

  • Robert B Hufnagel‎ et al.
  • Developmental biology‎
  • 2010‎

In the mammalian retina, neuronal differentiation begins in the dorso-central optic cup and sweeps peripherally and ventrally. While certain extrinsic factors have been implicated, little is known about the intrinsic factors that direct this process. In this study, we evaluate the expression and function of proneural bHLH transcription factors during the onset of mouse retinal neurogenesis. Dorso-central retinal progenitor cells that give rise to the first postmitotic neurons express Neurog2/Ngn2 and Atoh7/Math5. In the absence of Neurog2, the spread of neurogenesis stalls, along with Atoh7 expression and RGC differentiation. However, neurogenesis is eventually restored, and at birth Neurog2 mutant retinas are reduced in size, with only a slight increase in the retinal ganglion cell population. We find that the re-establishment of neurogenesis coincides with the onset of Ascl1 expression, and that Ascl1 can rescue the early arrest of neural development in the absence of Neurog2. Together, this study supports the hypothesis that the intrinsic factors Neurog2 and Ascl1 regulate the temporal progression of retinal neurogenesis by directing overlapping waves of neuron formation.


Conditional ablation of the Notch2 receptor in the ocular lens.

  • Senthil S Saravanamuthu‎ et al.
  • Developmental biology‎
  • 2012‎

Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors have not been investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, denucleation defects, and cataracts. Notch2 mutants also had persistent lens stalks as early as E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed that upon loss of Notch2, there were elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2), and Trp63 (p63) that negatively regulates Wnt signaling, plus down-regulation of Cdh1 (E-Cadherin). Removal of Notch2 also resulted in an increased proportion of fiber cells, as was found in Rbpj and Jag1 conditional mutant lenses. However, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. We found that Notch2 normally blocks lens progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.


CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function.

  • Pushpa Pandiyan‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Survival of antigen-experienced T cells is essential for the generation of adaptive immune responses. Here, we show that the genetic and antibody-mediated inactivation of CD152 (cytotoxic T lymphocyte antigen 4) in T helper (Th) effector cells reduced the frequency of nonapoptotic cells in a completely Fas/Fas ligand (FasL)-dependent manner. CD152 cross-linking together with stimulation of CD3 and CD28 on activated Th2 cells prevented activation-induced cell death (AICD) as a result of reduced Fas and FasL expression. Apoptosis protection conferred by CD152 correlated with the up-regulation of Bcl-2 and was mediated by phosphatidylinositol 3 kinase, which prevented FasL expression through the inhibitory phosphorylation of Forkhead transcription factor FKHRL1. We show that signals induced by CD152 act directly on activated T lymphocytes and, due to its differential surface expression on activated Th1 and Th2 cells, induce resistance to AICD mainly in Th2 cells.


Separate and coincident expression of Hes1 and Hes5 in the developing mouse eye.

  • Amy N Riesenberg‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2018‎

Notch signaling is broadly required during embryogenesis, frequently activating the transcription of two basic helix-loop-helix transcription factors, Hes1 and Hes5. But, it remains unresolved when and where Hes1 and Hes5 act alone or together during development. Here, we analyzed a Hes5-green fluorescent protein (GFP) bacterial artificial chromosome (BAC) transgenic mouse, as a proxy for endogenous Hes5. We directly compared transgenic GFP expression with Hes1, and particular markers of embryonic lens and retina development.


Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity.

  • Natarajan Bhaskaran‎ et al.
  • Frontiers in immunology‎
  • 2018‎

While T helper (Th) cells play a crucial role in host defense, an imbalance in Th effector subsets due to dysregulation in their differentiation and expansion contribute to inflammatory disorders. Here, we show that Casz1, whose function is previously unknown in CD4+ T cells, coordinates Th differentiation in vitro and in vivo. Casz1 deficiency in CD4+ T cells lowers susceptibility to experimental autoimmune encephalomyelitis, consistent with the reduced frequency of Th17 cells, despite an increase in Th1 cells in mice. Loss of Casz1 in the context of mucosal Candida infection severely impairs Th17 and Treg responses, and lowers the ability of the mice to clear the secondary infection. Importantly, in both the models, absence of Casz1 causes a significant diminution in IFN-γ+IL-17A+ double-positive inflammatory Th17 cells (Th1* cells) in tissues in vivo. Transcriptome analyses of CD4+ T cells lacking Casz1 show a signature consistent with defective Th17 differentiation. With regards to Th17 differentiation, Casz1 limits repressive histone marks and enables acquisition of permissive histone marks at Rorc, Il17a, Ahr, and Runx1 loci. Taken together, these data identify Casz1 as a new Th plasticity regulator having important clinical implications for autoimmune inflammation and mucosal immunity.


Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development.

  • Tien T Le‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2012‎

During vertebrate lens development, the lens placode in the embryonic ectoderm invaginates into a lens vesicle, which then separates from the surface epithelium, followed by two waves of fiber cell differentiation. In the mouse, multiple labs have shown that Jag1-Notch signaling is critically required during the second wave of lens fiber cell formation. However, Notch signaling appears to play no obvious role during lens induction or morphogenesis, although multiple pathway genes are expressed at these earlier stages.


The control of CD4+CD25+Foxp3+ regulatory T cell survival.

  • Pushpa Pandiyan‎ et al.
  • Biology direct‎
  • 2008‎

CD4+CD25+Foxp3+ regulatory T (Treg) cells are believed to play an important role in suppressing autoimmunity and maintaining peripheral tolerance. How their survival is regulated in the periphery is less clear. Here we show that Treg cells express receptors for gamma chain cytokines and are dependent on an exogenous supply of these cytokines to overcome cytokine withdrawal apoptosis in vitro. This result was validated in vivo by the accumulation of Treg cells in Bim-/- and Bcl-2 tg mice which have arrested cytokine deprivation apoptosis. We also found that CD25 and Foxp3 expression were down-regulated in the absence of these cytokines. CD25+ cells from Scurfy mice do not depend on cytokines for survival demonstrating that Foxp3 increases their dependence on cytokines by suppressing cytokine production in Treg cells. Our study reveals that the survival of Treg cells is strictly dependent on cytokines and cytokine producing cells because they do not produce cytokines. Our study thus, demonstrates that different gamma chain cytokines regulate Treg homeostasis in the periphery by differentially regulating survival and proliferation. These findings may shed light on ways to manipulate Treg cells that could be utilized for their therapeutic applications.


Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation.

  • Pushpa Pandiyan‎ et al.
  • Frontiers in immunology‎
  • 2016‎

Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4(+) T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4(+) T lymphocytes, such as T helper 17 cells and CD4(+)Foxp3(+) regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light on mucosal immune dysfunction and HIV reservoirs, and lead to novel ways to restore immune functions in HIV(+) patients.


TLR-2 Signaling Promotes IL-17A Production in CD4+CD25+Foxp3+ Regulatory Cells during Oropharyngeal Candidiasis.

  • Natarajan Bhaskaran‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2015‎

Recent studies show that CD4+CD25+Foxp3+ regulatory cells (Tregs) produce effector cytokines under inflammatory conditions. However, the direct role of microbial agents that serve as toll-like receptor (TLR) ligands in the induction of effector cytokines in Tregs is less clear. Here we show that CD4+Foxp3+Tregs produce the effector cytokine IL-17A during oropharyngeal candidiasis (OPC) and inflammatory bowel disease in a TLR-2/Myd88 signaling dependent manner. TLR-2 ligands promote proliferation in Tregs in the presence and absence of TCR signals and inflammatory cytokines in vitro. The proliferation is directly dependent on TLR-2 expression in Tregs. Consistent with this, Tlr2-/- mice harbor fewer thymically derived Tregs and peripheral Tregs under homeostatic conditions in vivo. However, under Th17 inducing conditions, IL-6 and TLR-2 signaling both in Tregs as well as antigen presenting cells (APC) are critical for maximal ROR-γt and IL-17A up-regulation in Foxp3+ Tregs. The minimal and transient loss of Foxp3 expression and suppressive properties are due to the presence of IL-6 in the milieu, but not the direct effect of TLR-2 signaling in Tregs. Taken together, our data reveal that TLR-2 signaling promotes not only proliferation, but also IL-17A in Tregs, depending on the cytokine milieu. These IL-17A producing Tregs may be relevant in mucosal infections and inflammation.


CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model.

  • Pushpa Pandiyan‎ et al.
  • Immunity‎
  • 2011‎

Th17 cells and CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells are thought to promote and suppress inflammatory responses, respectively. Here we explore why under Th17 cell polarizing conditions, Treg cells did not suppress, but rather upregulated, the expression of interleukin-17A (IL-17A), IL-17F, and IL-22 from responding CD4(+) T cells (Tresp cells). Upregulation of IL-17 cytokines in Tresp cells was dependent on consumption of IL-2 by Treg cells, especially at early time points both in vitro and in vivo. During an oral Candida albicans infection in mice, Treg cells induced IL-17 cytokines in Tresp cells, which markedly enhanced fungal clearance and recovery from infection. These findings show how Treg cells can promote acute Th17 cell responses to suppress mucosal fungus infections and reveal that Treg cells have a powerful capability to fight infections besides their role in maintaining tolerance or immune homeostasis.


The Role of Dectin-1 Signaling in Altering Tumor Immune Microenvironment in the Context of Aging.

  • Natarajan Bhaskaran‎ et al.
  • Frontiers in oncology‎
  • 2021‎

An increased accumulation of immune-dysfunction-associated CD4+Foxp3+ regulatory T cells (Tregs) is observed in aging oral mucosa during infection. Here we studied the function of Tregs during oral cancer development in aging mucosa. First, we found heightened proportions of Tregs and myeloid-derived suppressor cells (MDSC) accumulating in mouse and human oral squamous cell carcinoma (OSCC) tissues. Using the mouse 4-Nitroquinoline 1-oxide(4-NQO) oral carcinogenesis model, we found that tongues of aged mice displayed increased propensity for epithelial cell dysplasia, hyperplasia, and accelerated OSCC development, which coincided with significantly increased abundance of IL-1β, Tregs, and MDSC in tongues. Partial depletion of Tregs reduced tumor burden. Moreover, fungal abundance and dectin-1 signaling were elevated in aged mice suggesting a potential role for dectin-1 in modulating immune environment and tumor development. Confirming this tenet, dectin-1 deficient mice showed diminished IL-1β, reduced infiltration of Tregs and MDSC in the tongues, as well as slower progression and reduced severity of tumor burden. Taken together, these data identify an important role of dectin-1 signaling in establishing the intra-tumoral immunosuppressive milieu and promoting OSCC tumorigenesis in the context of aging.


Naïve CD4+ T Cell Lymphopenia and Apoptosis in Chronic Hepatitis C Virus Infection Is Driven by the CD31+ Subset and Is Partially Normalized in Direct-Acting Antiviral Treated Persons.

  • Ann W N Auma‎ et al.
  • Frontiers in immunology‎
  • 2021‎

The mechanisms underlying naïve CD4+ lymphopenia during chronic Hepatitis C Virus (HCV) infection are unclear. Whether direct-acting antiviral (DAA) therapy restores peripheral naïve CD4+ T cell numbers and function is unknown.


Role of Short Chain Fatty Acids in Controlling Tregs and Immunopathology During Mucosal Infection.

  • Natarajan Bhaskaran‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Interactions between mucosal tissues and commensal microbes control appropriate host immune responses and inflammation, but very little is known about these interactions. Here we show that the depletion of resident bacteria using antibiotics (Abx) causes oral and gut immunopathology during oropharyngeal candidiasis (OPC) infection. Antibiotic treatment causes reduction in the frequency of Foxp3+ regulatory cells (Tregs) and IL-17A producers, with a concomitant increase in oral tissue pathology. While C. albicans (CA) is usually controlled in the oral cavity, antibiotic treatment led to CA dependent oral and gut inflammation. A combination of short chain fatty acids (SCFA) controlled the pathology in Abx treated mice, correlating to an increase in the frequency of Foxp3+, IL-17A+, and Foxp3+IL-17A+ double positive (Treg17) cells in tongue and oral draining lymph nodes. However, SCFA treatment did not fully reverse the gut inflammation suggesting that resident microbiota have SCFA independent homeostatic mechanisms in gut mucosa. We also found that SCFA potently induce Foxp3 and IL-17A expression in CD4+ T cells, depending on the cytokine milieu in vitro. Depletion of Tregs alone in FDTR mice recapitulated oral inflammation in CA infected mice, showing that Abx mediated reduction of Tregs was involved in infection induced pathology. SCFA did not control inflammation in Treg depleted mice in CA infected FDTR mice, showing that Foxp3+ T cell induction was required for the protective effect mediated by SCFA. Taken together, our data reveal that SCFA derived from resident bacteria play a critical role in controlling immunopathology by regulating T cell cytokines during mucosal infections. This study has broader implications on protective effects of resident microbiota in regulating pathological infections.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: