Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1.

  • Magdalena Koczkowska‎ et al.
  • Human mutation‎
  • 2020‎

We report 281 individuals carrying a pathogenic recurrent NF1 missense variant at p.Met1149, p.Arg1276, or p.Lys1423, representing three nontruncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% confidence interval: 20.5-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276, or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared with the "classic" NF1-affected cohorts (all p < .0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all p < .0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (p < .0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population.


Transforming the clinical outcome in CRIM-negative infantile Pompe disease identified via newborn screening: the benefits of early treatment with enzyme replacement therapy and immune tolerance induction.

  • Cindy Li‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2021‎

To assess the magnitude of benefit to early treatment initiation, enabled by newborn screening or prenatal diagnosis, in patients with cross-reactive immunological material (CRIM)-negative infantile Pompe disease (IPD), treated with enzyme replacement therapy (ERT) and prophylactic immune tolerance induction (ITI) with rituximab, methotrexate, and intravenous immunoglobulin (IVIG).


Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype-phenotype correlation.

  • Magdalena Koczkowska‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors.


Spotlight on taliglucerase alfa in the treatment of pediatric patients with type 1 Gaucher disease.

  • Punita Gupta‎ et al.
  • Pediatric health, medicine and therapeutics‎
  • 2017‎

Gaucher disease (GD) is a heritable storage disorder caused by functional defects of the lysosomal acid β-glucosidase and the accumulation of glucosylceramide within macrophages, resulting in multiple organ dysfunction. There are three commercially available enzyme replacement therapy (ERT) products for the treatment of GD type 1 (GD1): imiglucerase, velaglucerase alfa, and taliglucerase alfa. Imiglucerase and velaglucerase alfa are produced in different mammalian cell systems; imiglucerase requires postproduction deglycosylation to expose terminal α-mannose residues, which are required for mannose receptor-mediated uptake by target macrophages. These steps are critical to the success of ERT for the treatment of visceral and hematologic manifestations of GD. Taliglucerase alfa is the first US Food and Drug Administration-approved plant-cell-expressed recombinant human protein, using carrot root cell cultures. Furthermore, it does not require postproduction glycosidic modifications. It is indicated for treatment of adults with GD1 in the US, Israel, Australia, Canada, Chile, Brazil, and other countries, and it is additionally approved for the treatment of pediatric patients in the US, Australia, and Canada and for the treatment of hematologic manifestations in pediatric patients with Type 3 GD in Canada and other countries. Our review focuses on the role of taliglucerase alfa in the pediatric population. A literature search through PubMed (from 1995 up till November 2016) of English language articles was performed with the following terms: Gaucher disease, lysosomal storage disease, taliglucerase. Secondary and tertiary references were obtained by reviewing related articles as well as the website www.Clinicaltrials.gov. It has been demonstrated that taliglucerase alfa is efficacious, with a well-established safety profile in pediatric, ERT-naïve patients with symptomatic GD1, as well as for those patients previously treated with imiglucerase.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: