Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Endogenous pathology in tauopathy mice progresses via brain networks.

  • Denise M O Ramirez‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.


A large-scale volumetric correlated light and electron microscopy study localizes Alzheimer's disease-related molecules in the hippocampus.

  • Xiaomeng Han‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Connectomics is a nascent neuroscience field to map and analyze neuronal networks. It provides a new way to investigate abnormalities in brain tissue, including in models of Alzheimer's disease (AD). This age-related disease is associated with alterations in amyloid-β (Aβ) and phosphorylated tau (pTau). These alterations correlate with AD's clinical manifestations, but causal links remain unclear. Therefore, studying these molecular alterations within the context of the local neuronal and glial milieu may provide insight into disease mechanisms. Volume electron microscopy (vEM) is an ideal tool for performing connectomics studies at the ultrastructural level, but localizing specific biomolecules within large-volume vEM data has been challenging. Here we report a volumetric correlated light and electron microscopy (vCLEM) approach using fluorescent nanobodies as immuno-probes to localize Alzheimer's disease-related molecules in a large vEM volume. Three molecules (pTau, Aβ, and a marker for activated microglia (CD11b)) were labeled without the need for detergents by three nanobody probes in a sample of the hippocampus of the 3xTg Alzheimer's disease model mouse. Confocal microscopy followed by vEM imaging of the same sample allowed for registration of the location of the molecules within the volume. This dataset revealed several ultrastructural abnormalities regarding the localizations of Aβ and pTau in novel locations. For example, two pTau-positive post-synaptic spine-like protrusions innervated by axon terminals were found projecting from the axon initial segment of a pyramidal cell. Three pyramidal neurons with intracellular Aβ or pTau were 3D reconstructed. Automatic synapse detection, which is necessary for connectomics analysis, revealed the changes in density and volume of synapses at different distances from an Aβ plaque. This vCLEM approach is useful to uncover molecular alterations within large-scale volume electron microscopy data, opening a new connectomics pathway to study Alzheimer's disease and other types of dementia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: