Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

  • Nathan Salomonis‎ et al.
  • Stem cell reports‎
  • 2016‎

The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.


Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives.

  • Kenneth Daily‎ et al.
  • Scientific data‎
  • 2017‎

The use of induced pluripotent stem cells (iPSC) derived from independent patients and sources holds considerable promise to improve the understanding of development and disease. However, optimized use of iPSC depends on our ability to develop methods to efficiently qualify cell lines and protocols, monitor genetic stability, and evaluate self-renewal and differentiation potential. To accomplish these goals, 57 stem cell lines from 10 laboratories were differentiated to 7 different states, resulting in 248 analyzed samples. Cell lines were differentiated and characterized at a central laboratory using standardized cell culture methodologies, protocols, and metadata descriptors. Stem cell and derived differentiated lines were characterized using RNA-seq, miRNA-seq, copy number arrays, DNA methylation arrays, flow cytometry, and molecular histology. All materials, including raw data, metadata, analysis and processing code, and methodological and provenance documentation are publicly available for re-use and interactive exploration at https://www.synapse.org/pcbc. The goal is to provide data that can improve our ability to robustly and reproducibly use human pluripotent stem cells to understand development and disease.


Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan.

  • Shuang Chen‎ et al.
  • Developmental cell‎
  • 2015‎

During fetal development, nephrons of the metanephric kidney form from a mesenchymal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis.


Single-cell RNA-Seq of human esophageal epithelium in homeostasis and allergic inflammation.

  • Mark Rochman‎ et al.
  • JCI insight‎
  • 2022‎

Inflammation of the esophageal epithelium is a hallmark of eosinophilic esophagitis (EoE), an emerging chronic allergic disease. Herein, we probed human esophageal epithelial cells at single-cell resolution during homeostasis and EoE. During allergic inflammation, the epithelial differentiation program was blocked, leading to loss of KRT6hi differentiated populations and expansion of TOP2hi proliferating, DSPhi transitioning, and SERPINB3hi transitioning populations; however, there was stability of the stem cell-enriched PDPNhi basal epithelial compartment. This differentiation program blockade was associated with dysregulation of transcription factors, including nuclear receptor signalers, in the most differentiated epithelial cells and altered NOTCH-related cell-to-cell communication. Each epithelial population expressed genes with allergic disease risk variants, supporting their functional interplay. The esophageal epithelium differed notably between EoE in histologic remission and controls, indicating that remission is a transitory state poised to relapse. Collectively, our data uncover the dynamic nature of the inflamed human esophageal epithelium and provide a framework to better understand esophageal health and disease.


Age-of-diagnosis dependent ileal immune intensification and reduced alpha-defensin in older versus younger pediatric Crohn Disease patients despite already established dysbiosis.

  • Yael Haberman‎ et al.
  • Mucosal immunology‎
  • 2019‎

Age-of-diagnosis associated variation in disease location and antimicrobial sero-reactivity has suggested fundamental differences in pediatric Crohn Disease (CD) pathogenesis. This variation may be related to pubertal peak incidence of ileal involvement and Peyer's patches maturation, represented by IFNγ-expressing Th1 cells. However, direct mucosal evidence is lacking. We characterize the global pattern of ileal gene expression and microbial communities in 525 treatment-naive pediatric CD patients and controls (Ctl), stratifying samples by their age-of-diagnosis. We show a robust ileal gene signature notable for higher expression of specific immune genes including GM-CSF and INFγ, and reduced expression of antimicrobial Paneth cell α-defensins, in older compared to younger patients. Reduced α-defensin expression in older patients was associated with higher IFNγ expression. By comparison, the CD-associated ileal dysbiosis, characterized by expansion of Enterobacteriaceae and contraction of Lachnospiraceae and Ruminococcaceae, was already established within the younger group and did not vary systematically with increasing age-of-diagnosis. Multivariate analysis considering individual taxa, however did demonstrate negative associations between Lachnospiraceae and IFNγ, and positive associations between Bacteroides and α-defensin expression. These data provide evidence for maturation of mucosal Th1 immune responses and loss of epithelial antimicrobial α-defensins which are associated with specific taxa with increasing age-of-diagnosis in pediatric CD.


Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer.

  • Mary C Bedard‎ et al.
  • Nature communications‎
  • 2023‎

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner.

  • Andriy Myronovych‎ et al.
  • Obesity (Silver Spring, Md.)‎
  • 2014‎

Our objective was to investigate the role of bile acids in hepatic steatosis reduction after vertical sleeve gastrectomy (VSG).


IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival.

  • Allie K Adams‎ et al.
  • Oncotarget‎
  • 2015‎

The chromatin-binding DEK protein was recently reported to promote the growth of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs). Relevant cellular and molecular mechanism(s) controlled by DEK in HNSCC remain poorly understood. While DEK is known to regulate specific transcriptional targets, global DEK-dependent gene networks in HNSCC are unknown. To identify DEK transcriptional signatures we performed RNA-Sequencing (RNA-Seq) in HNSCC cell lines that were either proficient or deficient for DEK. Bioinformatic analyses and subsequent validation revealed that IRAK1, a regulator of inflammatory signaling, and IRAK1-dependent regulatory networks were significantly repressed upon DEK knockdown in HNSCC. According to TCGA data, 14% of HNSCC specimens overexpressed IRAK1, thus supporting possible oncogenic functions. Furthermore, genetic or pharmacologic inhibition of IRAK1 in HNSCC cell lines was sufficient to attenuate downstream signaling such as ERK1/2 and to induce HNSCC cell death by apoptosis. Finally, targeting DEK and IRAK1 simultaneously enhanced cell death as compared to targeting either alone. Our findings reveal that IRAK1 promotes cell survival and is an attractive therapeutic target in HNSCC cells. Thus, we propose a model wherein IRAK1 stimulates tumor signaling and phenotypes both independently and in conjunction with DEK.


Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system.

  • Joseph D Watson‎ et al.
  • BMC genomics‎
  • 2008‎

DNA microarrays provide a powerful method for global analysis of gene expression. The application of this technology to specific cell types and tissues, however, is typically limited by small amounts of available mRNA, thereby necessitating amplification. Here we compare microarray results obtained with two different methods of RNA amplification to profile gene expression in the C. elegans larval nervous system.


Mucosal Genomics Implicate Lymphocyte Activation and Lipid Metabolism in Refractory Environmental Enteric Dysfunction.

  • Yael Haberman‎ et al.
  • Gastroenterology‎
  • 2021‎

Environmental enteric dysfunction (EED) limits the Sustainable Development Goals of improved childhood growth and survival. We applied mucosal genomics to advance our understanding of EED.


Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response.

  • Yael Haberman‎ et al.
  • Nature communications‎
  • 2019‎

Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α4β7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches.


Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study.

  • Stephanie M Ware‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Pediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first-degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01873963.


The genetic architecture of pediatric cardiomyopathy.

  • Stephanie M Ware‎ et al.
  • American journal of human genetics‎
  • 2022‎

To understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: