Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Momentum space imaging of σ orbitals for chemical analysis.

  • Anja Haags‎ et al.
  • Science advances‎
  • 2022‎

Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.


Orbital Mapping of Semiconducting Perylenes on Cu(111).

  • Giovanni Di Santo‎ et al.
  • The journal of physical chemistry. C, Nanomaterials and interfaces‎
  • 2021‎

Semiconducting O-doped polycyclic aromatic hydrocarbons constitute a class of molecules whose optoelectronic properties can be tailored by acting on the π-extension of the carbon-based frameworks and on the oxygen linkages. Although much is known about their photophysical and electrochemical properties in solution, their self-assembly interfacial behavior on solid substrates has remained unexplored so far. In this paper, we have focused our attention on the on-surface self-assembly of O-doped bi-perylene derivatives. Their ability to assemble in ordered networks on Cu(111) single-crystalline surfaces allowed a combination of structural, morphological, and spectroscopic studies. In particular, the exploitation of the orbital mapping methodology based on angle-resolved photoemission spectroscopy, with the support of scanning tunneling microscopy and low-energy electron diffraction, allowed the identification of both the electronic structure of the adsorbates and their geometric arrangement. Our multi-technique experimental investigation includes the structure determination from powder X-ray diffraction data for a specific compound and demonstrates that the electronic structure of such large molecular self-assembled networks can be studied using the reconstruction methods of molecular orbitals from photoemission data even in the presence of segregated chiral domains.


Ferrous to Ferric Transition in Fe-Phthalocyanine Driven by NO2 Exposure.

  • Iulia Cojocariu‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2021‎

Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.


Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer.

  • Marie S Sättele‎ et al.
  • The journal of physical chemistry. C, Nanomaterials and interfaces‎
  • 2022‎

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).


Disentangling the multiorbital contributions of excitons by photoemission exciton tomography.

  • Wiebke Bennecke‎ et al.
  • Nature communications‎
  • 2024‎

Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton's multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: