Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase.

  • Florence Margottin-Goguet‎ et al.
  • Developmental cell‎
  • 2003‎

Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.


Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors.

  • Norman L Lehman‎ et al.
  • The American journal of pathology‎
  • 2007‎

The fidelity of cell division is dependent on the accumulation and ordered destruction of critical protein regulators. By triggering the appropriately timed, ubiquitin-dependent proteolysis of the mitotic regulatory proteins securin, cyclin B, aurora A kinase, and polo-like kinase 1, the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays an essential role in maintaining genomic stability. Misexpression of these APC/C substrates, individually, has been implicated in genomic instability and cancer. However, no comprehensive survey of the extent of their misregulation in tumors has been performed. Here, we analyzed more than 1600 benign and malignant tumors by immunohistochemical staining of tissue microarrays and found frequent overexpression of securin, polo-like kinase 1, aurora A, and Skp2 in malignant tumors. Positive and negative APC/C regulators, Cdh1 and Emi1, respectively, were also more strongly expressed in malignant versus benign tumors. Clustering and statistical analysis supports the finding that malignant tumors generally show broad misregulation of mitotic APC/C substrates not seen in benign tumors, suggesting that a "mitotic profile" in tumors may result from misregulation of the APC/C destruction pathway. This profile of misregulated mitotic APC/C substrates and regulators in malignant tumors suggests that analysis of this pathway may be diagnostically useful and represent a potentially important therapeutic target.


Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis.

  • Keren I Hilgendorf‎ et al.
  • Cell‎
  • 2019‎

Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and ω-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARγ and CEBPα to initiate adipogenesis. We propose that dietary ω-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fat cells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.


Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging.

  • Adelaida R Palla‎ et al.
  • Nature communications‎
  • 2022‎

During aging, the regenerative capacity of muscle stem cells (MuSCs) decreases, diminishing the ability of muscle to repair following injury. We found that the ability of MuSCs to regenerate is regulated by the primary cilium, a cellular protrusion that serves as a sensitive sensory organelle. Abolishing MuSC cilia inhibited MuSC proliferation in vitro and severely impaired injury-induced muscle regeneration in vivo. In aged muscle, a cell intrinsic defect in MuSC ciliation was associated with the decrease in regenerative capacity. Exogenous activation of Hedgehog signaling, known to be localized in the primary cilium, promoted MuSC expansion, both in vitro and in vivo. Delivery of the small molecule Smoothened agonist (SAG1.3) to muscles of aged mice restored regenerative capacity leading to increased strength post-injury. These findings provide fresh insights into the signaling dysfunction in aged MuSCs and identify the ciliary Hedgehog signaling pathway as a potential therapeutic target to counter the loss of muscle regenerative capacity which accompanies aging.


Oxaliplatin disrupts nucleolar function through biophysical disintegration.

  • H Broder Schmidt‎ et al.
  • Cell reports‎
  • 2022‎

Platinum (Pt) compounds such as oxaliplatin are among the most commonly prescribed anti-cancer drugs. Despite their considerable clinical impact, the molecular basis of platinum cytotoxicity and cancer specificity remain unclear. Here we show that oxaliplatin, a backbone for the treatment of colorectal cancer, causes liquid-liquid demixing of nucleoli at clinically relevant concentrations. Our data suggest that this biophysical defect leads to cell-cycle arrest, shutdown of Pol I-mediated transcription, and ultimately cell death. We propose that instead of targeting a single molecule, oxaliplatin preferentially partitions into nucleoli, where it modifies nucleolar RNA and proteins. This mechanism provides a general approach for drugging the increasing number of cellular processes linked to biomolecular condensates.


Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation.

  • Justyna A Janas‎ et al.
  • Molecular cell‎
  • 2022‎

Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.


Multiplexed screens identify RAS paralogues HRAS and NRAS as suppressors of KRAS-driven lung cancer growth.

  • Rui Tang‎ et al.
  • Nature cell biology‎
  • 2023‎

Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.


SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment.

  • Chien-Ting Wu‎ et al.
  • Cell metabolism‎
  • 2021‎

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic β cells can be infected by SARS-CoV-2 and cause β cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in β cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic β cells in patients who succumbed to COVID-19 and selectively infects human islet β cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces β cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic β cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce β cell killing.


Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation.

  • Quanlong Lu‎ et al.
  • Nature cell biology‎
  • 2015‎

Membrane association with mother centriole (M-centriole) distal appendages is critical for ciliogenesis initiation. How the Rab GTPase Rab11-Rab8 cascade functions in early ciliary membrane assembly is unknown. Here, we show that the membrane shaping proteins EHD1 and EHD3, in association with the Rab11-Rab8 cascade, function in early ciliogenesis. EHD1 and EHD3 localize to preciliary membranes and the ciliary pocket. EHD-dependent membrane tubulation is essential for ciliary vesicle formation from smaller distal appendage vesicles (DAVs). Importantly, this step functions in M-centriole to basal body transformation and recruitment of transition zone proteins and IFT20. SNAP29, a SNARE membrane fusion regulator and EHD1-binding protein, is also required for DAV-mediated ciliary vesicle assembly. Interestingly, only after ciliary vesicle assembly is Rab8 activated for ciliary growth. Our studies uncover molecular mechanisms informing a previously uncharacterized ciliogenesis step, whereby EHD1 and EHD3 reorganize the M-centriole and associated DAVs before coordinated ciliary membrane and axoneme growth.


A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation.

  • Chih-Wen Chu‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.


Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis.

  • Suzanne Madgwick‎ et al.
  • The Journal of cell biology‎
  • 2006‎

During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1. Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a MetII spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a MetII spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.


Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1).

  • Jamie M Keck‎ et al.
  • The Journal of cell biology‎
  • 2007‎

Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APC(Cdh1)) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APC(Cdh1) substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E-mediated mitotic phenotype.


E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family.

  • Jenny Hsu‎ et al.
  • Nature communications‎
  • 2019‎

E2F transcription factors are central regulators of cell division and cell fate decisions. E2F4 often represents the predominant E2F activity in cells. E2F4 is a transcriptional repressor implicated in cell cycle arrest and whose repressive activity depends on its interaction with members of the RB family. Here we show that E2F4 is important for the proliferation and the survival of mouse embryonic stem cells. In these cells, E2F4 acts in part as a transcriptional activator that promotes the expression of cell cycle genes. This role for E2F4 is independent of the RB family. Furthermore, E2F4 functionally interacts with chromatin regulators associated with gene activation and we observed decreased histone acetylation at the promoters of cell cycle genes and E2F targets upon loss of E2F4 in RB family-mutant cells. Taken together, our findings uncover a non-canonical role for E2F4 that provide insights into the biology of rapidly dividing cells.


Oligomeric self-association contributes to E2A-PBX1-mediated oncogenesis.

  • Chiou-Hong Lin‎ et al.
  • Scientific reports‎
  • 2019‎

The PBX1 homeodomain transcription factor is converted by t(1;19) chromosomal translocations in acute leukemia into the chimeric E2A-PBX1 oncoprotein. Fusion with E2A confers potent transcriptional activation and constitutive nuclear localization, bypassing the need for dimerization with protein partners that normally stabilize and regulate import of PBX1 into the nucleus, but the mechanisms underlying its oncogenic activation are incompletely defined. We demonstrate here that E2A-PBX1 self-associates through the PBX1 PBC-B domain of the chimeric protein to form higher-order oligomers in t(1;19) human leukemia cells, and that this property is required for oncogenic activity. Structural and functional studies indicate that self-association facilitates the binding of E2A-PBX1 to DNA. Mutants unable to self-associate are transformation defective, however their oncogenic activity is rescued by the synthetic oligomerization domain of FKBP, which confers conditional transformation properties on E2A-PBX1. In contrast to self-association, PBX1 protein domains that mediate interactions with HOX DNA-binding partners are dispensable. These studies suggest that oligomeric self-association may compensate for the inability of monomeric E2A-PBX1 to stably bind DNA and circumvents protein interactions that otherwise modulate PBX1 stability, nuclear localization, DNA binding, and transcriptional activity. The unique dependence on self-association for E2A-PBX1 oncogenic activity suggests potential approaches for mechanism-based targeted therapies.


Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex.

  • Siyuan Ding‎ et al.
  • PLoS pathogens‎
  • 2016‎

Rotaviruses (RVs) are the leading cause of severe gastroenteritis in young children, accounting for half a million deaths annually worldwide. RV encodes non-structural protein 1 (NSP1), a well-characterized interferon (IFN) antagonist, which facilitates virus replication by mediating the degradation of host antiviral factors including IRF3 and β-TrCP. Here, we utilized six human and animal RV NSP1s as baits and performed tandem-affinity purification coupled with high-resolution mass spectrometry to comprehensively characterize NSP1-host protein interaction network. Multiple Cullin-RING ubiquitin ligase (CRL) complexes were identified. Importantly, inhibition of cullin-3 (Cul3) or RING-box protein 1 (Rbx1), by siRNA silencing or chemical perturbation, significantly impairs strain-specific NSP1-mediated β-TrCP degradation. Mechanistically, we demonstrate that NSP1 localizes to the Golgi with the host Cul3-Rbx1 CRL complex, which targets β-TrCP and NSP1 for co-destruction at the proteasome. Our study uncovers a novel mechanism that RV employs to promote β-TrCP turnover and provides molecular insights into virus-mediated innate immunity inhibition.


Structure-activity mapping of ARHGAP36 reveals regulatory roles for its GAP homology and C-terminal domains.

  • Patricia R Nano‎ et al.
  • PloS one‎
  • 2021‎

ARHGAP36 is an atypical Rho GTPase-activating protein (GAP) family member that drives both spinal cord development and tumorigenesis, acting in part through an N-terminal motif that suppresses protein kinase A and activates Gli transcription factors. ARHGAP36 also contains isoform-specific N-terminal sequences, a central GAP-like module, and a unique C-terminal domain, and the functions of these regions remain unknown. Here we have mapped the ARHGAP36 structure-activity landscape using a deep sequencing-based mutagenesis screen and truncation mutant analyses. Using this approach, we have discovered several residues in the GAP homology domain that are essential for Gli activation and a role for the C-terminal domain in counteracting an N-terminal autoinhibitory motif that is present in certain ARHGAP36 isoforms. In addition, each of these sites modulates ARHGAP36 recruitment to the plasma membrane or primary cilium. Through comparative proteomics, we also have identified proteins that preferentially interact with active ARHGAP36, and we demonstrate that one binding partner, prolyl oligopeptidase-like protein, is a novel ARHGAP36 antagonist. Our work reveals multiple modes of ARHGAP36 regulation and establishes an experimental framework that can be applied towards other signaling proteins.


LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer.

  • Christopher W Murray‎ et al.
  • Nature communications‎
  • 2022‎

LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.


Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration.

  • Ermelinda Porpiglia‎ et al.
  • Cell stem cell‎
  • 2022‎

In aging, skeletal muscle strength and regenerative capacity decline, due in part to functional impairment of muscle stem cells (MuSCs), yet the underlying mechanisms remain elusive. Here, we capitalize on mass cytometry to identify high CD47 expression as a hallmark of dysfunctional MuSCs (CD47hi) with impaired regenerative capacity that predominate with aging. The prevalent CD47hi MuSC subset suppresses the residual functional CD47lo MuSC subset through a paracrine signaling loop, leading to impaired proliferation. We uncover that elevated CD47 levels on aged MuSCs result from increased U1 snRNA expression, which disrupts alternative polyadenylation. The deficit in aged MuSC function in regeneration can be overcome either by morpholino-mediated blockade of CD47 alternative polyadenylation or antibody blockade of thrombospondin-1/CD47 signaling, leading to improved regeneration in aged mice, with therapeutic implications. Our findings highlight a previously unrecognized age-dependent alteration in CD47 levels and function in MuSCs, which underlies reduced muscle repair in aging.


Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers.

  • Tsuguhisa Nakayama‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-β1 levels between smokers and non-smokers.


UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma.

  • Kaja Kostyrko‎ et al.
  • Nature communications‎
  • 2023‎

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: