Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers.

  • Logan C Walker‎ et al.
  • European journal of human genetics : EJHG‎
  • 2017‎

Genome-wide studies of patients carrying pathogenic variants (mutations) in BRCA1 or BRCA2 have reported strong associations between single-nucleotide polymorphisms (SNPs) and cancer risk. To conduct the first genome-wide association analysis of copy-number variants (CNVs) with breast or ovarian cancer risk in a cohort of 2500 BRCA1 pathogenic variant carriers, CNV discovery was performed using multiple calling algorithms and Illumina 610k SNP array data from a previously published genome-wide association study. Our analysis, which focused on functionally disruptive genomic deletions overlapping gene regions, identified a number of loci associated with risk of breast or ovarian cancer for BRCA1 pathogenic variant carriers. Despite only including putative deletions called by at least two or more algorithms, detection of selected CNVs by ancillary molecular technologies only confirmed 40% of predicted common (>1% allele frequency) variants. These include four loci that were associated (unadjusted P<0.05) with breast cancer (GTF2H2, ZNF385B, NAALADL2 and PSG5), and two loci associated with ovarian cancer (CYP2A7 and OR2A1). An interesting finding from this study was an association of a validated CNV deletion at the CYP2A7 locus (19q13.2) with decreased ovarian cancer risk (relative risk=0.50, P=0.007). Genomic analysis found this deletion coincides with a region displaying strong regulatory potential in ovarian tissue, but not in breast epithelial cells. This study highlighted the need to verify CNVs in vitro, but also provides evidence that experimentally validated CNVs (with plausible biological consequences) can modify risk of breast or ovarian cancer in BRCA1 pathogenic variant carriers.


Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2016‎

A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.


The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

  • Gisella Figlioli‎ et al.
  • NPJ breast cancer‎
  • 2019‎

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.


Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.

  • Dervla M Connaughton‎ et al.
  • American journal of human genetics‎
  • 2020‎

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Physician-directed genetic screening to evaluate personal risk for medically actionable disorders: a large multi-center cohort study.

  • Eden V Haverfield‎ et al.
  • BMC medicine‎
  • 2021‎

The use of proactive genetic screening for disease prevention and early detection is not yet widespread. Professional practice guidelines from the American College of Medical Genetics and Genomics (ACMG) have encouraged reporting pathogenic variants that confer personal risk for actionable monogenic hereditary disorders, but only as secondary findings from exome or genome sequencing. The Centers for Disease Control and Prevention (CDC) recognizes the potential public health impact of three Tier 1 actionable disorders. Here, we report results of a large multi-center cohort study to determine the yield and potential value of screening healthy individuals for variants associated with a broad range of actionable monogenic disorders, outside the context of secondary findings.


Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

  • Jun Li‎ et al.
  • American journal of human genetics‎
  • 2016‎

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Diagnostic Exome Sequencing Identifies a Novel Gene, EMILIN1, Associated with Autosomal-Dominant Hereditary Connective Tissue Disease.

  • Alessandra Capuano‎ et al.
  • Human mutation‎
  • 2016‎

Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio-exome sequencing of a 55-year-old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN-1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN-1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal-dominant connective tissue disorder.


Germline HOXB13 G84E mutation carriers and risk to twenty common types of cancer: results from the UK Biobank.

  • Jun Wei‎ et al.
  • British journal of cancer‎
  • 2020‎

Germline HOXB13 G84E mutation has been consistently associated with prostate cancer (PCa) risk, but its association with other cancers is controversial. We systematically tested its association with the 20 most common cancer types in subjects from the UK Biobank. The G84E mutation was found in 1,545 (0.34%) of 460,224 participants of European ancestry. While mutation status did not associate with cancer risk in females, it was significantly associated with increased risk in males; odds ratio (OR) (95% confidence interval) for overall cancer diagnosis was 2.19 (1.89-2.52), P = 2.5E-19. The association remained after excluding PCa; OR = 1.4 (1.16-1.68), P = 0.003, suggesting association with other cancers. Indeed, suggestive novel associations were found for two other cancer types; rectosigmoid cancer, OR = 2.25 (1.05-4.15), P = 0.05 and non-melanoma skin cancer (NMSC), OR = 1.40 (1.12-1.74), P = 0.01. For NMSC, the association was found only in basal cell carcinoma, OR = 1.37 (1.07-1.74), P = 0.03. These findings have potential clinical utility for genetic counselling regarding HOXB13.


Flype: Software for enabling personalized medicine.

  • Donald L Helseth‎ et al.
  • American journal of medical genetics. Part C, Seminars in medical genetics‎
  • 2021‎

The advent of next generation DNA sequencing (NGS) has revolutionized clinical medicine by enabling wide-spread testing for genomic anomalies and polymorphisms. With that explosion in testing, however, come several informatics challenges including managing large amounts of data, interpreting the results and providing clinical decision support. We present Flype, a web-based bioinformatics platform built by a small group of bioinformaticians working in a community hospital setting, to address these challenges by allowing us to: (a) securely accept data from a variety of sources, (b) send orders to a variety of destinations, (c) perform secondary analysis and annotation of NGS data, (d) provide a central repository for all genomic variants, (e) assist with tertiary analysis and clinical interpretation, (f) send signed out data to our EHR as both PDF and discrete data elements, (g) allow population frequency analysis and (h) update variant annotation when literature knowledge evolves. We discuss the multiple use cases Flype supports such as (a) in-house NGS tests, (b) in-house pharmacogenomics (PGX) tests, (c) dramatic scale-up of genomic testing using an external lab, (d) consumer genomics using two external partners, and (e) a variety of reporting tools. The source code for Flype is available upon request to the authors.


Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.

  • Helian Feng‎ et al.
  • Genetic epidemiology‎
  • 2020‎

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.


Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers.

  • Christopher Hakkaart‎ et al.
  • Communications biology‎
  • 2022‎

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

  • Elena Vigorito‎ et al.
  • PloS one‎
  • 2016‎

Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.


Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.

  • Laura Fachal‎ et al.
  • Nature genetics‎
  • 2020‎

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.


Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.

  • Chenjie Zeng‎ et al.
  • Breast cancer research : BCR‎
  • 2016‎

Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk.


Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2.

  • Valentina Silvestri‎ et al.
  • Breast cancer research : BCR‎
  • 2016‎

BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs).


Shared heritability and functional enrichment across six solid cancers.

  • Xia Jiang‎ et al.
  • Nature communications‎
  • 2019‎

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.


Primary Care Physician Experiences with Integrated Population-Scale Genetic Testing: A Mixed-Methods Assessment.

  • Amy A Lemke‎ et al.
  • Journal of personalized medicine‎
  • 2020‎

The scalable delivery of genomic medicine requires collaboration between genetics and non-genetics providers. Thus, it is essential to investigate and address the perceived value of and barriers to incorporating genetic testing into the clinical practice of primary care providers (PCPs). We used a mixed-methods approach of qualitative interviews and surveys to explore the experience of PCPs involved in the pilot DNA-10K population genetic testing program. Similar to previous research, PCPs reported low confidence with tasks related to ordering, interpreting and managing the results of genetic tests, and identified the need for additional education. PCPs endorsed high levels of utility for patients and their families but noted logistical challenges to incorporating genetic testing into their practice. Overall PCPs were not familiar with the United States' Genetic Information Nondiscrimination Act and they expressed high levels of concern for patient data privacy and potential insurance discrimination. This PCP feedback led to the development and implementation of several processes to improve the PCP experience with the DNA-10K program. These results contribute to the knowledge base regarding genomic implementation using a mixed provider model and may be beneficial for institutions developing similar clinical programs.


Patient-Reported Outcomes and Experiences with Population Genetic Testing Offered Through a Primary Care Network.

  • Amy A Lemke‎ et al.
  • Genetic testing and molecular biomarkers‎
  • 2021‎

Aims: To explore patient experiences in a large-scale primary care-based, preemptive genetic testing program. Methods: Patients who received genetic results from the initiative were invited to participate in an online survey 3 weeks postresult disclosure. A 6-month follow-up survey was sent to assess changes over time. Results: The initial survey was completed by 1646 patients, with 544 completing the 6-month follow-up survey. The following outcomes were high overall: patient-reported understanding of results (cancer: 87%; cardiac: 86%); perceived utility (75%); positive emotions (relieved: 66.8%; happy: 62.0%); family result sharing (67.6%); and satisfaction (87%), although analysis by demographic factors identified groups who may benefit from additional education and emotional support. Results-related health behaviors and discussions with providers increased over time (screening procedures 6.1% to 14.2% p < 0.001; provider discussion 10.3% to 25.3%, p < 0.001), and were more likely to take place for patients with positive cancer and/or cardiac results (39.8% vs. 7.6%, p < 0.001). Forty-seven percent of patients reported insurance discrimination concerns, and most (79.4%) were not familiar with privacy and nondiscrimination laws. Concerns regarding discrimination and negative emotions decreased between the two survey time points (privacy issues 44.6% to 35.1% p < 0.001; life insurance discrimination concerns 35.5% to 29.6%, p = 0.001; anxiety 8.1% to 3.3%, p < 0.001; and uncertainty 19.8% to 12.8%, p < 0.001). These findings led to the development and integration of additional patient resources to improve program implementation. Conclusion: Our findings highlight patient experiences with and areas of need in a community-based genomic screening pilot initiative using a mixed primary care/genetics provider model to deliver precision medicine.


Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.

  • Manuel A Ferreira‎ et al.
  • Nature communications‎
  • 2019‎

Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.


Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3.

  • Yosr Hamdi‎ et al.
  • Breast cancer research and treatment‎
  • 2017‎

Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: