Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Novelty seeking is related to individual risk preference and brain activation associated with risk prediction during decision making.

  • Ying Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Novelty seeking (NS) is a personality trait reflecting excitement in response to novel stimuli. High NS is usually a predictor of risky behaviour such as drug abuse. However, the relationships between NS and risk-related cognitive processes, including individual risk preference and the brain activation associated with risk prediction, remain elusive. In this fMRI study, participants completed the Tridimensional Personality Questionnaire to measure NS and performed a probabilistic decision making task. Using a mathematical model, we estimated individual risk preference. Brain regions associated with risk prediction were determined via fMRI. The NS score showed a positive correlation with risk preference and a negative correlation with the activation elicited by risk prediction in the right posterior insula (r-PI), left anterior insula (l-AI), right striatum (r-striatum) and supplementary motor area (SMA). Within these brain regions, only the activation associated with risk prediction in the r-PI showed a correlation with NS after controlling for the effect of risk preference. Resting-state functional connectivity between the r-PI and r-striatum/l-AI was negatively correlated with NS. Our results suggest that high NS may be associated with less aversion to risk and that the r-PI plays an important role in relating risk prediction to NS.


Thymidine phosphorylase gene variant, platelet counts and survival in gastrointestinal cancer patients treated by fluoropyrimidines.

  • Liu Huang‎ et al.
  • Scientific reports‎
  • 2014‎

The predictive value of thymidine phosphorylase gene variants (TP, also called platelet-derived endothelial cell growth factor) and thrombocytosis were controversial and worthy of further study in gastrointestinal cancer (GIC) patients. We screened all of the common missense single nucleotide polymorphisms (MAF ≥ 0.1) in fluoropyrimidines (FU) pathway genes (including TP, TS, ENOSF1 and DPD). Three of them were selected and genotyped using Sequenom MassARRAY in 141 GIC patients. TP expression was assessed by immunohistochemistry. Our aim was to evaluate the prognostic significance of studied genes and platelet counts in GIC patients. Multivariate analyses indicated in rs11479-T allele carriers, platelet counts negatively correlated to overall survival. In addition, T allele of TP: rs11479 was associated with higher TP expression in cancer tissues. We suggest TP: rs11479 variant combined with platelet counts may be useful prognostic makers in GIC patients receiving first-line FU chemotherapy and thrombopoietin factor should be used with caution in the rs11479 T allele bearing patients.


Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm.

  • Peng Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D.


Variants and haplotypes in Flap endonuclease 1 and risk of gallbladder cancer and gallstones: a population-based study in China.

  • Xingyuan Jiao‎ et al.
  • Scientific reports‎
  • 2015‎

The role of FEN1 genetic variants on gallstone and gallbladder cancer susceptibility is unknown. FEN1 SNPs were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method in blood samples from 341 gallbladder cancer patients and 339 healthy controls. The distribution of FEN1-69G > A genotypes among controls (AA, 20.6%; GA, 47.2% and GG 32.2%) was significantly different from that among gallbladder cancer cases (AA, 11.1%; GA, 48.1% and GG, 40.8%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-69G > A GA (OR = 1.73, 95% CI = 1.01-2.63) and the FEN1-69G > A GG (OR = 2.29, 95% CI = 1.31-3.9). The distribution of FEN1 -4150T genotypes among controls (TT, 21.8%;GT, 49.3% and GG 28.9%) was significantly different from that among gallbladder cancer cases (TT, 12.9%; GT, 48.4% and GG 38.7%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-4150T GT(OR = 1.93, 95% CI = 1.04-2.91) and the FEN1-4150T GG(OR = 2.56, 95% CI = 1.37-5.39). A significant trend towards increased association with gallbladder cancer was observed with potentially higher-risk FEN1-69G > A genotypes (P < 0.001, χ2 trend test) and FEN14150G > T (P < 0.001, χ2 trend test) in gallstone presence but not in gallstone absence (P = 0.81, P = 0.89, respectively). In conclusion, this study revealed firstly that FEN1 polymorphisms and haplotypes are associated with gallbladder cancer risk.


Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion.

  • Xiang-Qun Xie‎ et al.
  • Scientific reports‎
  • 2015‎

Hematopoietic stem cells (HSCs) have emerged as promising therapeutic cell sources for high-risk hematological malignancies and immune disorders. However, their clinical use is limited by the inability to expand these cells ex vivo. Therefore, there is an urgent need to identify specific targets and effective probes that can expand HSCs. Here we report a novel class of INK4C (p18(INK4C) or p18) small molecule inhibitors (p18SMIs), which were initially found by in silico 3D screening. We identified a lead p18 inhibitor, XIE18-6, confirmed its p18-targeting specificity and bioactivity of promoting HSCs expansion, and then performed structure-activity relationship (SAR) studies by synthesizing a series of analogs of XIE18-6. Among these, compound 40 showed the most potent bioactivity in HSCs expansion (ED50 = 5.21 nM). We confirmed that compound 40 promoted expansion of both murine and human HSCs, and also confirmed its p18-targeting specificity. Notably, compound 40 did not show significant cytotoxicity toward 32D cells or HSCs, nor did it augment leukemia cell proliferation. Taken together, our newly discovered p18SMIs represent novel chemical agents for murine and human HSCs ex vivo expansion and also can be used as valuable chemical probes for further HSC biology research towards promising utility for therapeutic purposes.


Immuno-targeting the multifunctional CD38 using nanobody.

  • Ting Li‎ et al.
  • Scientific reports‎
  • 2016‎

CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10(-11) molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.


Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts.

  • Zhengde Wei‎ et al.
  • Scientific reports‎
  • 2016‎

Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers.


Nucleation Mechanisms of CO2 Hydrate Reflected by Gas Solubility.

  • Peng Zhang‎ et al.
  • Scientific reports‎
  • 2018‎

The concentration of gas has been confirmed as a key factor dominating hydrate nucleation. In this study, CO2 hydrates were formed in pure water and a sodium dodecyl sulphate (SDS) solution using a temperature reduction method under constant pressure at different temperatures. The dissolving properties of CO2 throughout the whole induction period were investigated in detail. The experimental results showed that the 'memory effect' of hydrate might not be attributed to residual water structures after hydrate dissociation. Instead, residual gas molecules in the aqueous phase should receive more attention. Hydrate nucleation was confirmed to be a type of chain reaction. Low temperature was a significant factor that promoted hydrate nucleation. As a result, these two factors enhanced the stochastic features of the CO2 hydrate nucleation reaction. Even under the same conditions, critical gas concentrations beyond the threshold that hydrates can spontaneously nucleate were not fixed, but they still exhibited linear relations regarding a set temperature. Taking the significant influences of temperature into account, a new nucleation mechanism for CO2 hydrates was established based on the potential of the reaction system. Therefore, this study sheds new light when explaining the reason for the formation of gas hydrates in natural reservoirs.


TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway.

  • Peng Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Adriamycin is a first-line chemotherapy agent against cancer, but the development of resistance has become a major problem. Although autophagy is considered to be an adaptive survival response in response to chemotherapy and may be associated with chemoresistance, its inducer and the underlying molecular mechanisms remain unclear. Here, we demonstrate that adriamycin up-regulates the both levels of TRPC5 and autophagy, and the increase in autophagy is mediated by TRPC5 in breast cancer cells. Blockade of TRPC5 or autophagy increased the sensitivity to chemotherapy in vitro and in vivo. Notably, we revealed a positive correlation between TRPC5 and the autophagy-associated protein LC3 in paired patients with or without anthracycline-taxane-based chemotherapy. Furthermore, pharmacological inhibition and gene-silencing showed that the cytoprotective autophagy mediated by TRPC5 during adriamycin treatment is dependent on the CaMKKβ/AMPKα/mTOR pathway. Moreover, adriamycin-resistant MCF-7/ADM cells maintained a high basal level of autophagy, and silencing of TRPC5 and inhibition of autophagy counteracted the resistance to adriamycin. Thus, our results revealed a novel role of TRPC5 as an inducer of autophagy, and this suggests a novel mechanism of drug resistance in chemotherapy for breast cancer.


Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms.

  • Qiang Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches.


Imbalance between TNFα and progranulin contributes to memory impairment and anxiety in sleep-deprived mice.

  • Kun Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Sleep disorder is becoming a widespread problem in current society, and is associated with impaired cognition and emotional disorders. Progranulin (PGRN), also known as granulin epithelin precursor, promotes neurite outgrowth and cell survival, and is encoded by the GRN gene. It is a tumor necrosis factor α receptor (TNFR) ligand which is implicated in many central nervous system diseases. However, the role PGRN in sleep disorder remains unclear. In the present study, we found that sleep deprivation (S-DEP) impaired the memory and produced thigmotaxis/anxiety-like behaviors in mice. S-DEP increased the levels of TNFα but decreased PGRN levels in the hippocampus. The intracerebroventricular (ICV) injection of PGRN or intraperitoneal injection of TNFα synthesis blocker thalidomide (25 mg/kg), prevented the memory impairment and anxiety behaviors induced by S-DEP. PGRN treatment also restored dendritic spine density in the hippocampus CA1 region and neurogenesis in hippocampus dentate gyrus (DG). These results indicate that an imbalance between TNFα and PGRN contributes to memory impairment and thigmotaxis/anxiety caused by sleep deprivation.


Trend analysis and forecast of daily reported incidence of hand, foot and mouth disease in Hubei, China by Prophet model.

  • Cong Xie‎ et al.
  • Scientific reports‎
  • 2021‎

Hand, foot, and mouth disease (HFMD) is common among children below 5 years. HFMD has a high incidence in Hubei Province, China. In this study, the Prophet model was used to forecast the incidence of HFMD in comparison with the autoregressive-integrated moving average (ARIMA) model, and HFMD incidence was decomposed into trends, yearly, weekly seasonality and holiday effect. The Prophet model fitted better than the ARIMA model in daily reported incidence of HFMD. The HFMD incidence forecast by the Prophet model showed that two peaks occurred in 2019, with the higher peak in May and the lower peak in December. Periodically changing patterns of HFMD incidence were observed after decomposing the time-series into its major components. In specific, multi-year variability of HFMD incidence was found, and the slow-down increasing point of HFMD incidence was identified. Relatively high HFMD incidences appeared in May and on Mondays. The effect of Spring Festival on HFMD incidence was much stronger than that of other holidays. This study showed the potential of the Prophet model to detect seasonality in HFMD incidence. Our next goal is to incorporate climate variables into the Prophet model to produce an accurate forecast of HFMD incidence.


Fatty Acid Uptake in T Cell Subsets Using a Quantum Dot Fatty Acid Conjugate.

  • Megan E Muroski‎ et al.
  • Scientific reports‎
  • 2017‎

Fatty acid (FA) metabolism directly influences the functional capabilities of T cells in tumor microenvironments. Thus, developing tools to interrogate FA-uptake by T cell subsets is important for understanding tumor immunosuppression. Herein, we have generated a novel FA-Qdot 605 dye conjugate with superior sensitivity and flexibility to any of the previously commercially available alternatives. For the first time, we demonstrate that this nanoparticle can be used as a specific measure of fatty acid uptake by T cells both in-vitro and in-vivo. Flow cytometric analysis shows that both the location and activation status of T cells determines their FA uptake. Additionally, CD4+ Foxp3+ regulatory T cells (Tregs) uptake FA at a higher rate than effector T cell subsets, supporting the role of FA metabolism for Treg function. Furthermore, we are able to simultaneously detect glucose and fatty acid uptake directly within the tumor microenvironment. Cumulatively, our results suggest that this novel fluorescent probe is a powerful tool to understand FA utilization within the tumor, thereby providing an unprecedented opportunity to study T cell FA metabolism in-vivo.


Cardioprotective effects of early intervention with sacubitril/valsartan on pressure overloaded rat hearts.

  • Xiaofei Li‎ et al.
  • Scientific reports‎
  • 2021‎

Left ventricular remodeling due to pressure overload is associated with poor prognosis. Sacubitril/valsartan is the first-in-class Angiotensin Receptor Neprilysin Inhibitor and has been demonstrated to have superior beneficial effects in the settings of heart failure. The aim of this study was to determine whether sacubitril/valsartan has cardioprotective effect in the early intervention of pressure overloaded hearts and whether it is superior to valsartan alone. We induced persistent left ventricular pressure overload in rats by ascending aortic constriction surgery and orally administrated sacubitril/valsartan, valsartan, or vehicle one week post operation for 10 weeks. We also determined the effects of sacubitril/valsartan over valsartan on adult ventricular myocytes and fibroblasts that were isolated from healthy rats and treated in culture. We found that early intervention with sacubitril/valsartan is superior to valsartan in reducing pressure overload-induced ventricular fibrosis and in reducing angiotensin II-induced adult ventricular fibroblast activation. While neither sacubitril/valsartan nor valsartan changes cardiac hypertrophy development, early intervention with sacubitril/valsartan protects ventricular myocytes from mitochondrial dysfunction and is superior to valsartan in reducing mitochondrial oxidative stress in response to persistent left ventricular pressure overload. In conclusion, our findings demonstrate that sacubitril/valsartan has a superior cardioprotective effect over valsartan in the early intervention of pressure overloaded hearts, which is independent of the reduction of left ventricular afterload. Our study provides evidence in support of potential benefits of the use of sacubitril/valsartan in patients with resistant hypertension or in patients with severe aortic stenosis.


Analysis of prognostic model based on immunotherapy related genes in lung adenocarcinoma.

  • Peng Zhang‎ et al.
  • Scientific reports‎
  • 2022‎

Lung cancer is one of the most common malignant tumors, and ranks high in the list of mortality due to cancers. Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Despite progress in the diagnosis and treatment of lung cancer, the prognosis of these patients remains dismal. Therefore, it is crucial to identify the predictors and treatment targets of lung cancer to provide appropriate treatments and improve patient prognosis. In this study, the gene modules related to immunotherapy were screened by weighted gene co-expression network analysis (WGCNA). Using unsupervised clustering, patients in The Cancer Genome Atlas (TCGA) were divided into three clusters based on the gene expression. Next, gene clustering was performed on the prognosis-related differential genes, and a six-gene prognosis model (comprising PLK1, HMMR, ANLN, SLC2A1, SFTPB, and CYP4B1) was constructed using least absolute shrinkage and selection operator (LASSO) analysis. Patients with LUAD were divided into two groups: high-risk and low-risk. Significant differences were found in the survival, immune cell infiltration, Tumor mutational burden (TMB), immune checkpoints, and immune microenvironment between the high- and low-risk groups. Finally, the accuracy of the prognostic model was verified in the Gene Expression Omnibus (GEO) dataset in patients with LUAD (GSE30219, GSE31210, GSE50081, GSE72094).


The effects of text direction of different text lengths on Chinese reading.

  • Yanqun Huang‎ et al.
  • Scientific reports‎
  • 2023‎

This study investigates the effects of text direction (horizontal and vertical) and length (long and short) on Chinese reading performance. The experiment enrolled 68 university students aged 19-29 years who were asked to read articles. We recorded reading times and measured recall after reading using a memory test and measured task load using the NASA-TLX scale. The results show that horizontal text was read faster than vertical text. When reading long texts, horizontal reading has a better memory effect than vertical reading. When reading short texts, the effect of text direction on memory was not significant. Moreover, the mental, physical, and temporal demands of horizontal text were lower than those of vertical text. These findings contribute to a better understanding of the impact of text direction, provide valuable suggestions for Chinese typography, and help readers obtain better reading outcomes.


DLAT is a promising prognostic marker and therapeutic target for hepatocellular carcinoma: a comprehensive study based on public databases.

  • Peng Zhang‎ et al.
  • Scientific reports‎
  • 2023‎

Cuproptosis is a new mechanism of cell death that differs from previously identified regulatory cell death mechanisms. Cuproptosis induction holds promise as a new tumour treatment. Therefore, we investigated the value of cuproptosis-related genes in the management of hepatocellular carcinoma (HCC). The cuproptosis-related gene Dihydrolipoamide S-Acetyltransferase (DLAT) were significantly upregulated in liver cancer tissues. High levels of DLAT were an independent prognostic factor for shorter overallsurvival (OS) time. DLAT and its related genes were mainly involved in cell metabolism, tumor progression and immune regulation. DLAT was significantly associated with the level of immune cell infiltration and immune checkpoints in HCC. HCC with high DLAT expression was predicted to be more sensitive to sorafenib treatment. The risk prognostic signature established based on DLAT and its related genes had a good prognostic value. The cuproptosis-related gene DLAT is a promising independent prognostic marker and therapeutic target in HCC. The new prognostic signature can effectively predict the prognosis of HCC patients.


Regression-based Chinese norms of number connection test A and digit symbol test for diagnosing minimal hepatic encephalopathy.

  • Peng Zhang‎ et al.
  • Scientific reports‎
  • 2024‎

Number connection test A (NCT-A) and digit symbol test (DST), the preferential neuropsychological tests to detect minimal hepatic encephalopathy (MHE) in China, haven't been standardized in Chinese population. We aimed to establish the norms based on a multi-center cross-sectional study and to detect MHE in cirrhotic patients. NCT-A and DST were administered to 648 healthy controls and 1665 cirrhotic patients. The regression-based procedure was applied to develop demographically adjusted norms for NCT-A and DST based on healthy controls. Age, gender, education, and age by education interaction were all predictors of DST, while age, gender, and education by gender interaction were predictors of log10 NCT-A. The predictive equations for expected scores of NCT-A and DST were established, and Z-scores were calculated. The norm for NCT-A was set as Z ≤ 1.64, while the norm for DST was set as Z ≥ - 1.64. Cirrhotic patients with concurrent abnormal NCT-A and DST results were diagnosed with MHE. The prevalence of MHE was 8.89% in cirrhotic patients, and only worse Child-Pugh classification (P = 0.002, OR = 2.389) was demonstrated to be the risk factor for MHE. The regression-based normative data of NCT-A and DST have been developed to detect MHE in China. A significant proportion of Chinese cirrhotic patients suffered from MHE, especially those with worse Child-Pugh classification.


Protective effect of oxytocin on LPS-induced acute lung injury in mice.

  • Xiaona An‎ et al.
  • Scientific reports‎
  • 2019‎

Oxytocin (OT), a neurohypophyseal hormone synthesized in the paraventricular and supraoptic nuclei of the hypothalamus, has been reported to have an anti- inflammatory effect. However, its role in acute lung injury (ALI) has never been investigated. The aim of this study was to explore the therapeutic effects and potential mechanism action of OT on lipopolysaccharide (LPS)-induced ALI. Mice were treated with OT 30 min before the intraperitoneal injection of LPS. After 2 h, the effects of OT on lung histopathological changes, lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), and expression of inflammation proteins were detected. The results showed that OT significantly reduced LPS-induced pathological injury, W/D ratio, MPO activity, and the levels of interleukin (IL)-1β, IL-18 and IL-6. Further, OT also inhibited LPS-induced Toll-like receptor 4 expression and NLR family pyrin domain containing 3 inflammasome activation. OT receptor antagonist (L-368,899) was given 90 min before injecting OT to further demonstrate the role of OT in LPS-induced ALI. The results showed OT could not alleviate the aforementioned inflammatory reactions after administering L-368,899. In conclusion, the present results indicated that OT could reduce inflammatory responses of LPS-induced ALI.


Development of Alendronate-conjugated Poly (lactic-co-glycolic acid)-Dextran Nanoparticles for Active Targeting of Cisplatin in Osteosarcoma.

  • Ping Liu‎ et al.
  • Scientific reports‎
  • 2015‎

In this study, we developed a novel poly (lactic-co-glycolic acid)-dextran (PLD)-based nanodelivery system to enhance the anticancer potential of cisplatin (CDDP) in osteosarcoma cells. A nanosized CDDP-loaded PLGA-DX nanoparticle (PLD/CDDP) controlled the release rate of CDDP up to 48 h. In vitro cytotoxicity assay showed a superior anticancer effect for PLD/CDDP and with an appreciable cellular uptake via endocytosis-mediated pathways. PLD/CDDP exhibited significant apoptosis of MG63 cancer cells compared to that of free CDDP. Approximately ~25% of cells were in early apoptosis phase after PLD/CDDP treatment comparing to ~15% for free CDDP after 48h incubation. Similarly, PLD/CDDP exhibited ~30% of late apoptosis cells comparing to only ~8% for free drug treatment. PLD/CDDP exhibited significantly higher G2/M phase arrest in MG63 cells than compared to free CDDP with a nearly 2-fold higher arrest in case of PLD/CDDP treated group (~60%). Importantly, PLD/CDDP exhibited a most significant anti-tumor activity with maximum tumor growth inhibition. The superior inhibitory effect was further confirmed by a marked reduction in the number of CD31 stained tumor blood vessels and decrease in the Ki67 staining intensity for PLD/CDDP treated animal group. Overall, CDDP formulations could provide a promising and most effective platform in the treatment of osteosarcoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: