Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Facilely accessible quinoline derivatives as potent antibacterial agents.

  • Peng Teng‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2018‎

Quinoline compounds have been extensively explored as anti-malaria and anti-cancer agents for decades and show profound functional bioactivities, however, the studies of these compounds in other medicinal fields have lagged dramatically. In this study, we report the development of a series of facilely accessible quinoline derivatives that display potent antibacterial activity against a panel of multidrug-resistant Gram-positive bacterial strains, especially C. difficile. We also demonstrated that these molecules are effective in vivo against C. difficile. These results revealed that these types of quinoline compounds could serve as prototypes for the development of an appealing class of antibiotic agents used to combat Gram-positive drug-resistant bacterial strains, including C. difficile.


Interactive Repression of MYRF Self-Cleavage and Activity in Oligodendrocyte Differentiation by TMEM98 Protein.

  • Hao Huang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Myelin sheath formed by oligodendrocytes (OLs) is essential for the rapid propagation of action potentials in the vertebrate CNS. Myelin regulatory factor (MYRF) is one of the critical factors that control OL differentiation and myelin maintenance. Previous studies showed that MYRF is a membrane-bound transcription factor associated with the endoplasmic reticulum (ER). After self-cleavage, the N-fragment of MYRF is released from the ER and translocated into the nucleus where it functions as a transcription factor to activate myelin gene expression. At present, it remains unknown whether MYRF self-cleavage and functional activation can be regulated during OL differentiation. Here, we report that TMEM98, an ER-associated transmembrane protein, is capable of binding to the C-terminal of MYRF and inhibiting its self-cleavage and N-fragment nuclear translocation. In the developing CNS, TMEM98 is selectively expressed in early maturing OLs in mouse pups of either sex. Forced expression of TMEM98 in embryonic chicken spinal cord of either sex suppresses endogenous OL differentiation and MYRF-induced ectopic expression of myelin genes. These results suggest that TMEM98, through inhibiting the self-cleavage of MYRF, functions as a negative feedback regulator of MYRF in oligodendrocyte differentiation and myelination.SIGNIFICANCE STATEMENT MYRF protein is initially synthesized as an ER-associated membrane protein that undergoes autoproteolytic cleavage to release the N-fragment, which is then transported into the nucleus and activates the transcription of myelin genes. To date, the molecular mechanisms that regulate the self-cleavage and function of MYRF in regulating oligodendrocyte differentiation have remained unknown. In this study, we present the molecular and functional evidence that TMEM98 membrane protein physically interacts with MYRF in the ER and subsequently blocks its self-cleavage, N-terminal nuclear translocation, and functional activation of myelin gene expression. To our knowledge, this is the first report on the regulation of MYRF self-proteolytic activity and function by an interacting protein, providing new insights into the molecular regulation of OL differentiation and myelinogenesis.


BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin.

  • Xiao-Jing Zhu‎ et al.
  • PLoS genetics‎
  • 2014‎

Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification.


Biocompatibility of polypropylene mesh scaffold with adipose-derived stem cells.

  • Hui Cheng‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

In this study, we investigated the rejection of the synthetic patch and human tissues in the host. We observed the growth of adipose-derived stem cells (ADSCs) cultured with polypropylene mesh in vitro. The results of flow cytometry showed that the expression of CD44, CD73, CD90, CD45, CD14 and CD34 was 98.54, 95.32, 98.49, 1.21, 3.01 and 2.14%, respectively. ADSCs were isolated from rabbit subcutaneous adipose tissue after collagenase digestion, filtration and centrifugation. The ADSCs of passage 3 were seeded onto the polypropylene mesh scaffolds. New Zealand White female breeder rabbits were implanted with polypropylene mesh, ADSC-fixed polypropylene mesh in the abdomen. After 4 weeks, adhesion was performed and the erosion of the mesh was evaluated. It was found that polypropylene mesh, ADSC-fixed polypropylene mesh all had different degrees of corrosion, and adhesion, but polypropylene mesh was more corroded. ADSC-fixed polypropylene mesh induced a milder chronic inflammation response compared with polypropylene, had significantly lower scores for inflammation (t=11.083), and had significantly higher scores for neovascularization (t=14.362) and fibroblastic proliferation (t=15.979). The relative amount of VEGF mRNA was significantly lower for ADSC-fixed polypropylene compared with the other polypropylene meshes (t=94.6). In conclusion, polypropylene mesh scaffold with ADSCs exhibit excellent cellular compatibility and are promising in clinical practice.


Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway.

  • Juan Li‎ et al.
  • Journal of neuroinflammation‎
  • 2023‎

Postoperative pain is a serious clinical problem with a poorly understood mechanism, and lacks effective treatment. Hydrogen (H2) can reduce neuroinflammation; therefore, we hypothesize that H2 may alleviate postoperative pain, and aimed to investigate the underlying mechanism.


Stage-specific regulation of oligodendrocyte development by Hedgehog signaling in the spinal cord.

  • Xiaofeng Xu‎ et al.
  • Glia‎
  • 2020‎

Elucidation of signaling pathways that control oligodendrocyte (OL) development is a prerequisite for developing novel strategies for myelin repair in neurological diseases. Despite the extensive work outlining the importance of Hedgehog (Hh) signaling in the commitment and generation of OL progenitor cells (OPCs), there are conflicting reports on the role of Hh signaling in regulating OL differentiation and maturation. In the present study, we systematically investigated OPC specification and differentiation in genetically modified mouse models of Smoothened (Smo), an essential component of the Hh signaling pathway in vertebrates. Through conditional gain-of-function strategy, we demonstrated that hyperactivation of Smo in neural progenitors induced transient ectopic OPC generation and precocious OL differentiation accompanied by the co-induction of Olig2 and Nkx2.2. After the commitment of OL lineage, Smo activity is not required for OL differentiation, and sustained expression of Smo in OPCs stimulated cell proliferation but inhibited terminal differentiation. These findings have uncovered the stage-specific regulation of OL development by Smo-mediated Hh signaling, providing novel insights into the molecular regulation of OL differentiation and myelin repair.


Genetic liability to age at first sex and birth in relation to cardiovascular diseases: a Mendelian randomization study.

  • Miao Chen‎ et al.
  • BMC medical genomics‎
  • 2023‎

Growing evidence suggests that various reproductive factors, including early menarche, early menopause, and age at first birth, may increase the risk of developing cardiovascular disease (CVD) later in life. However, the associations between reproductive factors and CVDs are inconsistent and controversial. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis to explore the potential links between age at first sex (AFS) and age at first birth (AFB) and several CVDs.


The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development.

  • Guohua Yuan‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development.


Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task.

  • Yi Xiao‎ et al.
  • PloS one‎
  • 2015‎

Attention is important in error processing. Few studies have examined the link between sustained attention and error processing. In this study, we examined how error-related negativity (ERN) of a four-choice reaction time task was reduced in the mental fatigue condition and investigated the role of sustained attention in error processing. Forty-one recruited participants were divided into two groups. In the fatigue experiment group, 20 subjects performed a fatigue experiment and an additional continuous psychomotor vigilance test (PVT) for 1 h. In the normal experiment group, 21 subjects only performed the normal experimental procedures without the PVT test. Fatigue and sustained attention states were assessed with a questionnaire. Event-related potential results showed that ERN (p < 0.005) and peak (p < 0.05) mean amplitudes decreased in the fatigue experiment. ERN amplitudes were significantly associated with the attention and fatigue states in electrodes Fz, FC1, Cz, and FC2. These findings indicated that sustained attention was related to error processing and that decreased attention is likely the cause of error processing impairment.


Morphine induces dysfunction of PINK1/Parkin-mediated mitophagy in spinal cord neurons implying involvement in antinociceptive tolerance.

  • Hong Kong‎ et al.
  • Journal of molecular cell biology‎
  • 2019‎

The development of opioid-induced analgesic tolerance is a clinical challenge in long-term use for managing chronic pain. The mechanisms of morphine tolerance are poorly understood. Mitochondria-derived reactive oxygen species (ROS) is a crucial signal inducing analgesic tolerance and pain. Chronic administration of morphine leads to robust ROS production and accumulation of damaged mitochondria, which are immediately removed by mitophagy. Here, we show that morphine inhibits mitochondria damage-induced accumulation of PTEN-induced putative kinase 1 (PINK1) in neurons. It interrupts the recruitment of Parkin to the impaired mitochondria and inhibits the ubiquitination of mitochondrial proteins catalyzed by Parkin. Consequently, morphine suppresses the recognition of autophagosomes to the damaged mitochondria mediated by LC3 and sequestosome-1 (SQSTM1/p62). Thus, morphine inhibits autophagy flux and leads to the accumulation of SQSTM1/p62. Finally, the impaired mitochondria cannot be delivered to lysosomes for degradation and ultimately induces robust ROS production and morphine tolerance. Our findings suggest that the dysfunction of mitophagy is involved in morphine tolerance. The deficiency of PINK1/Parkin-mediated clearance of damaged mitochondria is crucial for the generation of excessive ROS and important to the development of analgesic tolerance. These findings suggest that the compounds capable of stabilizing PINK1 or restoring mitophagy may be utilized to prevent or reduce opioid tolerance during chronic pain management.


Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade.

  • Liwei Zhang‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: Wear particle-induced periprosthetic osteolysis (PPO) is a common long-term complication of total joint arthroplasty, and represents the major cause of aseptic loosening and subsequent implant failure. Previous studies have identified the central role of osteoclast-mediated bone resorption in the pathogenesis of PPO. Thus, therapeutic approaches of inhibiting osteoclast formation and activity are considered to be of great potential to prevent and treat this osteolytic disease. Hedgehog (Hh) signaling has been shown to play an important role in promoting osteoblast differentiation and bone formation. While Hh signaling is also implicated in regulating osteoclastogenesis, whether it can directly inhibit osteoclast differentiation and bone resorption remains controversial. Moreover, its potential therapeutic effects on PPO have never been assessed. In this study, we explored the cell-autonomous role of Hh signaling in regulating osteoclastogenesis and its therapeutic potential in preventing wear particle-induced osteolysis. Methods: Hh signaling was activated in macrophages by genetically ablating Sufu in these cells using LysM-Cre or by treating them with purmorphamine (PM), a pharmacological activator of Smoothened (Smo). In vitro cell-autonomous effects of Hh pathway activation on RANKL-induced osteoclast differentiation and activity were evaluated by TRAP staining, phalloidin staining, qPCR analyses, and bone resorption assays. In vivo evaluation of its therapeutic efficacy against PPO was performed in a murine calvarial model of titanium particle-induced osteolysis by μCT and histological analyses. Mechanistic details were explored in RANKL-treated macrophages through Western blot analyses. Results: We found that Sufu deletion or PM treatment potently activated Hh signaling in macrophages, and strongly inhibited RANKL-induced TRAP+ osteoclast production, F-actin ring formation, osteoclast-specific gene expression, and osteoclast activity in vitro. Furthermore, we found that Sufu deletion or PM administration significantly attenuated titanium particle-induced osteoclast formation and bone loss in vivo. Our mechanistic study revealed that activation of Hh signaling suppressed RANKL-induced activation of JNK pathway and downregulated protein levels of two key osteoclastic transcriptional factors, c-Fos and its downstream target NFATc1. Conclusions: Both genetic and pharmacological activation of Hh signaling can cell-autonomously inhibit RANKL-induced osteoclast differentiation and activity in vitro and protect against titanium particle-induced osteolysis in vivo. Mechanistically, Hh signaling hinders osteoclastogenesis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Thus, Hh signaling may serve as a promising therapeutic target for the prevention and treatment of PPO and other osteolytic diseases.


A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells.

  • Junlin Yang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2016‎

Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently.


Effects of ANCR lncRNA on the biological behaviors of lung cancer cells A549 and the mechanism.

  • Chengyao Ni‎ et al.
  • Translational cancer research‎
  • 2020‎

ANCR lncRNA has been reported to participate in many cancers, but its role in lung cancer remains unclear. FOXO1 is involved in the growth inhibition and prognosis of lung cancer. We aimed to evaluate the effects of ANCR lncRNA on the biological behaviors of lung cancer cells and the mechanism.


The human lncRNA GOMAFU suppresses neuronal interferon response pathways affected in neuropsychiatric diseases.

  • Peng Teng‎ et al.
  • Brain, behavior, and immunity‎
  • 2023‎

Long noncoding RNAs (lncRNAs) play multifaceted roles in regulating brain gene networks. LncRNA abnormalities are thought to underlie the complex etiology of numerous neuropsychiatric disorders. One example is the human lncRNA gene GOMAFU, which is found dysregulated in schizophrenia (SCZ) postmortem brains and harbors genetic variants that contribute to the risk of SCZ. However, transcriptome-wide biological pathways regulated by GOMAFU have not been determined. How GOMAFU dysregulation contributes to SCZ pathogenesis remains elusive. Here we report that GOMAFU is a novel suppressor of human neuronal interferon (IFN) response pathways that are hyperactive in the postmortem SCZ brains. We analyzed recently released transcriptomic profiling datasets in clinically relevant brain areas derived from multiple SCZ cohorts and found brain region-specific dysregulation of GOMAFU. Using CRISPR-Cas9 to delete the GOMAFU promoter in a human neural progenitor cell model, we identified transcriptomic alterations caused by GOMAFU deficiency in pathways commonly affected in postmortem brains of SCZ and autism spectrum disorder (ASD), with the most striking effects on upregulation of numerous genes underlying IFN signaling. In addition, expression levels of GOMAFU target genes in the IFN pathway are differentially affected in SCZ brain regions and negatively associated with GOMAFU alterations. Furthermore, acute exposure to IFN-γ causes a rapid decline of GOMAFU and activation of a subclass of GOMAFU targets in stress and immune response pathways that are affected in SCZ brains, which form a highly interactive molecular network. Together, our studies unveiled the first evidence of lncRNA-governed neuronal response pathways to IFN challenge and suggest that GOMAFU dysregulation may mediate environmental risks and contribute to etiological neuroinflammatory responses by brain neurons of neuropsychiatric diseases.


The function of Wls in ovarian development.

  • Luyi Chen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2021‎

WNT ligand transporter Wls is essential for the WNT dependent developmental and pathogenic processes. The spatiotemporal expression pattern of Wls was investigated in this study. Immature female mice (21-22 days old) were treated with 5 IU, pregnant mare's serum gonadotrophin (PMSG) to stimulate follicular development, followed 48 h later by injection with 5 IU, human chorionic gonadotrophin (hCG) to induce ovulation. The expression of Wls was stimulated in granulosa cells and the forming corpus luteum after hCG administration. To study the function of Wls, the Amhr2tm3(cre)Bhr strain was used to target deletion of Wls in granulosa cells. The deletion of Wls caused a significant decrease in the fertility of WlsAmhr2-Cre female mice. In female WlsAmhr2-Cre mice, decreased ovarian size and number of antral follicles were found. The number of corpus luteum in immature PMSG/hCG primed WlsAmhr2-Cre mice was much less than that in the control group. Compared with control animals, WlsAmhr2-Cre mice have lower serum progesterone levels. RNA sequencing was used to identify genes regulated by Wls after hCG treatment. Several genes known to be critical for follicle development and steroidogenesis were significantly down-regulated, such as Fshr, Lhcgr, Sfrp4, Inhba, Cyp17a1, Hsd3b1, and Hsd17b7. The expression of WNT signaling downstream target genes, Bmp2 and Cyp19a1, also decreased significantly in WlsAmhr2-Cre ovary. In summary, the findings of this study suggest that Wls is critical for female fertility and luteinization.


Essential role of Msx1 in regulating anterior-posterior patterning of the secondary palate in mice.

  • Shicheng Zhu‎ et al.
  • Journal of genetics and genomics = Yi chuan xue bao‎
  • 2022‎

Development of the secondary palate displays molecular heterogeneity along the anterior-posterior axis; however, the underlying molecular mechanism remains largely unknown. MSX1 is an anteriorly expressed transcription repressor required for palate development. Here, we investigate the role of Msx1 in regional patterning of the secondary palate. The Wnt1-Cre-mediated expression of Msx1 (RosaMsx1Wnt1-Cre) throughout the palatal mesenchyme leads to cleft palate in mice, associated with aberrant cell proliferation and cell death. Osteogenic patterning of the hard palate in RosaMsx1Wnt1-Cre mice is severely impaired, as revealed by a marked reduction in palatine bone formation and decreased expression of the osteogenic regulator Sp7. Overexpression and knockout of Msx1 in mice show that the transcription repressor promotes the expression of the anterior palate-specific Alx1 but represses the expression of the medial-posterior palate genes Barx1, Meox2, and Tbx22. Furthermore, Tbx22 constitutes a direct Msx1 target gene in the secondary palate, suggesting that Msx1 can directly repress the expression of medial-posterior specific genes. Finally, we determine that Sp7 is downstream of Tbx22 in palatal mesenchymal cells, suggesting that a Msx1/Tbx22/Sp7 axis participates in the regulation of palate development. Our findings unveil a novel role for Msx1 in regulating the anterior-posterior growth and patterning of the secondary palate.


Pressure Overload-induced Cardiac Hypertrophy Varies According to Different Ligation Needle Sizes and Body Weights in Mice.

  • Zhen Jia‎ et al.
  • Arquivos brasileiros de cardiologia‎
  • 2018‎

The cardiac hypertrophy (CH) model for mice has been widely used, thereby providing an effective research foundation for CH exploration.


Control of astrocyte progenitor specification, migration and maturation by Nkx6.1 homeodomain transcription factor.

  • Xiaofeng Zhao‎ et al.
  • PloS one‎
  • 2014‎

Although astrocytes are the most abundant cell type in the central nervous system (CNS), little is known about their molecular specification and differentiation. It has previously been reported that transcription factor Nkx6.1 is expressed in neuroepithelial cells that give rise to astrocyte precursors in the ventral spinal cord. In the present study, we systematically investigated the function of Nkx6.1 in astrocyte development using both conventional and conditional Nkx6.1 mutant mice. At early postnatal stages, Nkx6.1 was expressed in a subpopulation of astrocytes in the ventral spinal cord. In the conventional Nkx6.1KO spinal cord, the initial specification of astrocyte progenitors was affected by the mutation, and subsequent migration and differentiation were disrupted in newborn mice. In addition, the development of VA2 subtype astrocytes was also inhibited in the white matter. Further studies with Nkx6.1 conditional mutants revealed significantly delayed differentiation and disorganized arrangement of fibrous astrocytes in the ventral white matter. Together, our studies indicate that Nkx6.1 plays a vital role in astrocyte specification and differentiation in the ventral spinal cord.


Tmeff2 is expressed in differentiating oligodendrocytes but dispensable for their differentiation in vivo.

  • Hao Huang‎ et al.
  • Scientific reports‎
  • 2017‎

Myelin elaborated by oligodendrocytes (OLs) in the central nervous system (CNS) is required for saltatory conduction of action potentials along neuronal axons. We found that TMEFF2, a transmembrane protein with EGF-like and two follistatin-like domains, is selectively expressed in differentiating/myelinating OLs. Previous studies showed that TMEFF2 is capable of binding to PDGFA, which plays important roles in the proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs). However, molecular and genetic analysis revealed that Tmeff2 is a weak binder of PDGFA, and not required for OL differentiation and myelin gene expression in vivo. Together, our data suggested that Tmeff2 is specifically upregulated in OLs, but dispensable for OL differentiation and maturation.


Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate.

  • Ling Yu‎ et al.
  • Development (Cambridge, England)‎
  • 2005‎

The short stature homeobox gene SHOX is associated with idiopathic short stature in humans, as seen in Turner syndrome and Leri-Weill dyschondrosteosis, while little is known about its close relative SHOX2. We report the restricted expression of Shox2 in the anterior domain of the secondary palate in mice and humans. Shox2-/- mice develop an incomplete cleft that is confined to the anterior region of the palate, an extremely rare type of clefting in humans. The Shox2-/- palatal shelves initiate, grow and elevate normally, but the anterior region fails to contact and fuse at the midline, owing to altered cell proliferation and apoptosis, leading to incomplete clefting within the presumptive hard palate. Accompanied with these cellular alterations is an ectopic expression of Fgf10 and Fgfr2c in the anterior palatal mesenchyme of the mutants. Tissue recombination and bead implantation experiments revealed that signals from the anterior palatal epithelium are responsible for the restricted mesenchymal Shox2 expression. BMP activity is necessary but not sufficient for the induction of palatal Shox2 expression. Our results demonstrate an intrinsic requirement for Shox2 in palatogenesis, and support the idea that palatogenesis is differentially regulated along the anteroposterior axis. Furthermore, our results demonstrate that fusion of the posterior palate can occur independently of fusion in the anterior palate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: