Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Metals and methylotrophy: Via global gene expression studies.

  • Zachary J Johnson‎ et al.
  • Methods in enzymology‎
  • 2021‎

A number of minerals, such as copper, cobalt, and rare earth elements (REE), are essential modulators of microbial one-carbon metabolism. This chapter provides an overview of the gene expression study design and analysis protocols for uncovering REE-induced changes in methylotrophic bacteria. By interrogating relationships and differences in total gene expression induced by mineral micronutrients, a deeper understanding of gene regulation at a systems scale can be gained. With careful design and execution of RNA-sequencing experiments, thorough processing and assessment of read quality can be utilized to assess and adjust for possible biases. By ensuring only quality data are utilized in downstream processes, differential gene expression, overrepresented analyses, and gene-set enrichment analyses provide reliable and reproducible representation of pathways and functions which are being affected by changes in environmental conditions.


Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom.

  • Aaron Oliver‎ et al.
  • Scientific reports‎
  • 2021‎

A near-complete diploid nuclear genome and accompanying circular mitochondrial and chloroplast genomes have been assembled from the elite commercial diatom species Nitzschia inconspicua. The 50 Mbp haploid size of the nuclear genome is nearly double that of model diatom Phaeodactylum tricornutum, but 30% smaller than closer relative Fragilariopsis cylindrus. Diploid assembly, which was facilitated by low levels of allelic heterozygosity (2.7%), included 14 candidate chromosome pairs composed of long, syntenic contigs, covering 93% of the total assembly. Telomeric ends were capped with an unusual 12-mer, G-rich, degenerate repeat sequence. Predicted proteins were highly enriched in strain-specific marker domains associated with cell-surface adhesion, biofilm formation, and raphe system gliding motility. Expanded species-specific families of carbonic anhydrases suggest potential enhancement of carbon concentration efficiency, and duplicated glycolysis and fatty acid synthesis pathways across cytosolic and organellar compartments may enhance peak metabolic output, contributing to competitive success over other organisms in mixed cultures. The N. inconspicua genome delivers a robust new reference for future functional and transcriptomic studies to illuminate the physiology of benthic pennate diatoms and harness their unique adaptations to support commercial algae biomass and bioproduct production.


PTM-Psi: A python package to facilitate the computational investigation of post-translational modification on protein structures and their impacts on dynamics and functions.

  • Daniel Mejia-Rodriguez‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2023‎

Post-translational modification (PTM) of a protein occurs after it has been synthesized from its genetic template, and involves chemical modifications of the protein's specific amino acid residues. Despite of the central role played by PTM in regulating molecular interactions, particularly those driven by reversible redox reactions, it remains challenging to interpret PTMs in terms of protein dynamics and function because there are numerous combinatorially enormous means for modifying amino acids in response to changes in the protein environment. In this study, we provide a workflow that allows users to interpret how perturbations caused by PTMs affect a protein's properties, dynamics, and interactions with its binding partners based on inferred or experimentally determined protein structure. This Python-based workflow, called PTM-Psi, integrates several established open-source software packages, thereby enabling the user to infer protein structure from sequence, develop force fields for non-standard amino acids using quantum mechanics, calculate free energy perturbations through molecular dynamics simulations, and score the bound complexes via docking algorithms. Using the S-nitrosylation of several cysteines on the GAP2 protein as an example, we demonstrated the utility of PTM-Psi for interpreting sequence-structure-function relationships derived from thiol redox proteomics data. We demonstrate that the S-nitrosylated cysteine that is exposed to the solvent indirectly affects the catalytic reaction of another buried cysteine over a distance in GAP2 protein through the movement of the two ligands. Our workflow tracks the PTMs on residues that are responsive to changes in the redox environment and lays the foundation for the automation of molecular and systems biology modeling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: