Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Acute intermittent hypoxia with concurrent hypercapnia evokes P2X and TRPV1 receptor-dependent sensory long-term facilitation in naïve carotid bodies.

  • Arijit Roy‎ et al.
  • The Journal of physiology‎
  • 2018‎

Activity-dependent plasticity can be induced in carotid body (CB) chemosensory afferents without chronic intermittent hypoxia (CIH) preconditioning by acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc). Several properties of this acute plasticity are shared with CIH-dependent sensory long-term facilitation (LTF) in that induction is dependent on 5-HT, angiotensin II, protein kinase C and reactive oxygen species. Several properties differ from CIH-dependent sensory LTF; H2 O2 appears to play no part in induction, whereas maintenance requires purinergic P2X2/3 receptor activation and is dependent on transient receptor potential vanilloid type 1 (TRPV1) receptor sensitization. Because P2X2/3 and TRPV1 receptors are located in carotid sinus nerve (CSN) terminals but not presynaptic glomus cells, a primary site of the acute AIH-Hc induced sensory LTF appears to be postsynaptic. Our results obtained in vivo suggest a role for TRPV1-dependent CB activity in acute sympathetic LTF. We propose that P2X-TRPV1-receptor-dependent sensory LTF may constitute an important early mechanism linking sleep apnoea with hypertension and/or cardiovascular disease.


A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude.

  • Trevor A Day‎ et al.
  • The Journal of physiology‎
  • 2009‎

Interaction between central (brainstem) and peripheral (carotid body) respiratory chemosensitivity is vital to protect blood gases against potentially deleterious fluctuations, especially during sleep. Previously, using an in situ arterially perfused, vagotomized, decerebrate preparation in which brainstem and peripheral chemoreceptors are perfused separately (i.e. dual perfused preparation; DPP), we observed that the phrenic response to specific carotid body hypoxia was larger when the brainstem was held at 25 Torr P(CO(2)) compared to 50 Torr P(CO(2)). This suggests a negative (i.e. hypo-additive) interaction between chemoreceptors. The current study was designed to (a) determine whether this observation could be generalized to all carotid body stimuli, and (b) exclude the possibility that the hypo-additive response was the simple consequence of ventilatory saturation at high brainstem P(CO(2)). Specifically, we tested how steady-state brainstem P(CO(2)) modulates peripheral chemoreflex magnitude in response to carotid body P(CO(2)) and P(O(2)) perturbations, both above and below eupnoeic levels. We found that the peripheral chemoreflex was more responsive the lower the brainstem P(CO(2)) regardless of whether the peripheral chemoreceptors received stimuli which increased or decreased activation. These findings demonstrate a negative interaction between brainstem and peripheral chemosensitivity in the rat in the absence of ventilatory saturation. We suggest that a negative interaction in humans may contribute to increased controller gain associated with sleep-related breathing disorders and propose that the assumption of simple addition between chemoreceptor inputs used in current models of the respiratory control system be reconsidered.


PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines.

  • Nicholas G Jendzjowsky‎ et al.
  • The Journal of physiology‎
  • 2021‎

We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma-associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε-transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies' oxygen sensitivity is independent of PKCε-TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen-induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε-TRPV1 pathway, systemic delivery of a PKCε-blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: