Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Expression and Sequence Variants of Inflammatory Genes; Effects on Plasma Inflammation Biomarkers Following a 6-Week Supplementation with Fish Oil.

  • Hubert Cormier‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

(1) BACKGROUND: A growing body of literature suggest that polymorphisms (SNPs) from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs) to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene-diet interactions modulating plasma inflammatory biomarker levels. (2) METHODS: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs) using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3) RESULTS: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP) levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191)), but relative quantification (RQ) within the -0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all). (4) CONCLUSIONS: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene-diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels.


Effect of an isoenergetic traditional Mediterranean diet on apolipoprotein A-I kinetic in men with metabolic syndrome.

  • Caroline Richard‎ et al.
  • Nutrition journal‎
  • 2013‎

The impact of the Mediterranean diet (MedDiet) on high-density lipoprotein (HDL) kinetics has not been studied to date. The objective of this study was therefore to investigate the effect of the MedDiet in the absence of changes in body weight on apolipoprotein (apo) A-I kinetic in men with metabolic syndrome (MetS).


Eicosapentaenoic and docosahexaenoic acid supplementation and inflammatory gene expression in the duodenum of obese patients with type 2 diabetes.

  • Marie-Ève Labonté‎ et al.
  • Nutrition journal‎
  • 2013‎

The extent to which long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from fish oil such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert their anti-inflammatory effects by down-regulating intestinal inflammation in humans is unknown. We investigated the impact of LCn-3PUFA supplementation on inflammatory gene expression in the duodenum of obese patients with type 2 diabetes.


Comprehensive Review of the Impact of Dairy Foods and Dairy Fat on Cardiometabolic Risk.

  • Jean-Philippe Drouin-Chartier‎ et al.
  • Advances in nutrition (Bethesda, Md.)‎
  • 2016‎

Because regular-fat dairy products are a major source of cholesterol-raising saturated fatty acids (SFAs), current US and Canadian dietary guidelines for cardiovascular health recommend the consumption of low-fat dairy products. Yet, numerous randomized controlled trials (RCTs) have reported rather mixed effects of reduced- and regular-fat dairy consumption on blood lipid concentrations and on many other cardiometabolic disease risk factors, such as blood pressure and inflammation markers. Thus, the focus on low-fat dairy in current dietary guidelines is being challenged, creating confusion within health professional circles and the public. This narrative review provides perspective on the research pertaining to the impact of dairy consumption and dairy fat on traditional and emerging cardiometabolic disease risk factors. This comprehensive assessment of evidence from RCTs suggests that there is no apparent risk of potential harmful effects of dairy consumption, irrespective of the content of dairy fat, on a large array of cardiometabolic variables, including lipid-related risk factors, blood pressure, inflammation, insulin resistance, and vascular function. This suggests that the purported detrimental effects of SFAs on cardiometabolic health may in fact be nullified when they are consumed as part of complex food matrices such as those in cheese and other dairy foods. Thus, the focus on low-fat dairy products in current guidelines apparently is not entirely supported by the existing literature and may need to be revisited on the basis of this evidence. Future studies addressing key research gaps in this area will be extremely informative to better appreciate the impact of dairy food matrices, as well as dairy fat specifically, on cardiometabolic health.


Plasma biomarkers of small intestine adaptations in obesity-related metabolic alterations.

  • Catherine Lalande‎ et al.
  • Diabetology & metabolic syndrome‎
  • 2020‎

Evidence suggests that pathophysiological conditions such as obesity and type 2 diabetes (T2D) are associated with morphologic and metabolic alterations in the small intestinal mucosa. Exploring these alterations generally requires invasive methods, limiting data acquisition to subjects with enteropathies or undergoing bariatric surgery. We aimed to evaluate small intestine epithelial cell homeostasis in a cohort of men covering a wide range of adiposity and glucose homoeostasis statuses.


A Comparative Analysis of the Lipoprotein(a) and Low-Density Lipoprotein Proteomic Profiles Combining Mass Spectrometry and Mendelian Randomization.

  • Raphaëlle Bourgeois‎ et al.
  • CJC open‎
  • 2021‎

Lipoprotein(a) (Lp[a]), which consists of a low-density lipoprotein (LDL) bound to apolipoprotein(a), is one of the strongest genetic risk factors for atherosclerotic cardiovascular diseases. Few studies have performed hypothesis-free direct comparisons of the Lp(a) and the LDL proteomes. Our objectives were to compare the Lp(a) and the LDL proteomic profiles and to evaluate the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile.


Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation.

  • Hubert Cormier‎ et al.
  • Genes‎
  • 2013‎

Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition.


Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial.

  • Bénédicte L Tremblay‎ et al.
  • Lipids in health and disease‎
  • 2015‎

Fish oil-derived long-chain omega-3 (n-3) polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma triglyceride (TG) levels. Genetic factors such as single-nucleotide polymorphisms (SNPs) found in genes involved in metabolic pathways of n-3 PUFA could be responsible for well-recognized heterogeneity in plasma TG response to n-3 PUFA supplementation. Previous studies have shown that genes in the glycerophospholipid metabolism such as phospholipase A2 (PLA2) group II, IV, and VI, demonstrate changes in their expression levels in peripheral blood mononuclear cells (PBMCs) after n-3 PUFA supplementation.


Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population.

  • Iwona Rudkowska‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2013‎

OMIC technologies, including transcriptomics and metabolomics, may provide powerful tools for identifying the effects of nutrients on molecular functions and metabolic pathways. The objective was to investigate molecular and metabolic changes following n-3 polyunsaturated fatty acid (PUFA) supplementation in healthy subjects via traditional biomarkers as well as transcriptome and metabolome analyses. Thirteen men and 17 women followed a 2-week run-in period based on Canada's Food Guide and then underwent 6-week supplementation with n-3 PUFA (3 g/day). Traditional biochemical markers such as plasma lipids, inflammatory markers, glycemic parameters and erythrocyte fatty acid concentrations were measured. Changes in gene expression of peripheral blood mononuclear cells were assessed by microarrays, and metabolome profiles were assessed by mass spectrometry assay kit. After supplementation, plasma triglycerides decreased and erythrocyte n-3 PUFA concentrations increased to a similar extent in both genders. Further, plasma high-density lipoprotein cholesterol concentrations and fasting glucose levels increased in women after n-3 PUFA supplementation. N-3 PUFA supplementation changed the expression of 610 genes in men, whereas the expression of 250 genes was altered in women. Pathway analyses indicate changes in gene expression of the nuclear receptor peroxisome proliferator-activated receptor-alpha, nuclear transcription-factor kappaB, oxidative stress and activation of the oxidative stress response mediated by nuclear factor (erythroid-derived 2)-like 2. After n-3 PUFA supplementation, metabolomics profiles demonstrate an increase in acylcarnitines, hexose and leucine in men only and a decrease in saturation of glycerophosphatidylcholine and lysophosphatidylcholine concentrations in all subjects. Overall, traditional and novel biomarkers suggest that n-3 PUFA supplementation exerts cardioprotective effects.


Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: results from a pre-post fish oil supplementation.

  • Hubert Cormier‎ et al.
  • Genes & nutrition‎
  • 2014‎

Polymorphisms (SNPs) within the FADS gene cluster and the ELOVL gene family are believed to influence enzyme activities after an omega-3 (n-3) fatty acid (FA) supplementation. The objectives of the study are to test whether an n-3 supplementation is associated with indexes of desaturase and elongase activities in addition to verify whether SNPs in the FADS gene cluster and the ELOVL gene family modulate enzyme activities of desaturases and elongases. A total 208 subjects completed a 6-week supplementation period with 5 g/day of fish oil (1.9-2.2 g/day of EPA + 1.1 g/day of DHA). FA profiles of plasma phospholipids were obtained by gas chromatography (n = 210). Desaturase and elongase indexes were estimated using product-to-precursor ratios. Twenty-eight SNPs from FADS1, FADS2, FADS3, ELOVL2 and ELOVL5 were genotyped using TaqMan technology. Desaturase indexes were significantly different after the 6-week n-3 supplementation. The index of δ-5 desaturase activity increased by 25.7 ± 28.8 % (p < 0.0001), whereas the index of δ-6 desaturase activity decreased by 17.7 ± 18.2 % (p < 0.0001) post-supplementation. Index of elongase activity decreased by 39.5 ± 27.9 % (p < 0.0001). Some gene-diet interactions potentially modulating the enzyme activities of desaturases and elongases involved in the FA metabolism post-supplementation were found. SNPs within the FADS gene cluster and the ELOVL gene family may play an important role in the enzyme activity of desaturases and elongases, suggesting that an n-3 FAs supplementation may affect PUFA metabolism.


Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans.

  • Bastien Vallée Marcotte‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

A genome-wide association study (GWAS) by our group identified loci associated with the plasma triglyceride (TG) response to ω-3 fatty acid (FA) supplementation in IQCJ, NXPH1, PHF17 and MYB. Our aim is to investigate potential mechanisms underlying the associations between single nucleotide polymorphisms (SNPs) in the four genes and TG levels following ω-3 FA supplementation. 208 subjects received 3 g/day of ω-3 FA (1.9-2.2 g of EPA and 1.1 g of docosahexaenoic acid (DHA)) for six weeks. Plasma TG were measured before and after the intervention. 67 SNPs were selected to increase the density of markers near GWAS hits. Genome-wide expression and methylation analyses were conducted on respectively 30 and 35 participants' blood sample together with in silico analyses. Two SNPs of IQCJ showed different affinities to splice sites depending on alleles. Expression levels were influenced by genotype for one SNP in NXPH1 and one in MYB. Associations between 12 tagged SNPs of IQCJ, 26 of NXPH1, seven of PHF17 and four of MYB and gene-specific CpG site methylation levels were found. The response of plasma TG to ω-3 FA supplementation may be modulated by the effect of DNA methylation on expression levels of genes revealed by GWAS.


The metabolic signature associated with the Western dietary pattern: a cross-sectional study.

  • Annie Bouchard-Mercier‎ et al.
  • Nutrition journal‎
  • 2013‎

Metabolic profiles have been shown to be associated to obesity status and insulin sensitivity. Dietary intakes influence metabolic pathways and therefore, different dietary patterns may relate to modifications in metabolic signatures. The objective was to verify associations between dietary patterns and metabolic profiles composed of amino acids (AAs) and acylcarnitines (ACs).


Polymorphisms in genes involved in fatty acid β-oxidation interact with dietary fat intakes to modulate the plasma TG response to a fish oil supplementation.

  • Annie Bouchard-Mercier‎ et al.
  • Nutrients‎
  • 2014‎

A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9-2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation.


Differential effect of fenofibrate and atorvastatin on in vivo kinetics of apolipoproteins B-100 and B-48 in subjects with type 2 diabetes mellitus with marked hypertriglyceridemia.

  • Jean-Charles Hogue‎ et al.
  • Metabolism: clinical and experimental‎
  • 2008‎

The specific impact of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors and fibrates on the in vivo metabolism of apolipoprotein (apo) B has not been systematically investigated in patients with type 2 diabetes mellitus with high plasma triglyceride (TG) levels. Therefore, the objective of this 2-group parallel study was to examine the differential effects of a 6-week treatment with atorvastatin or fenofibrate on in vivo kinetics of apo B-48 and B-100 in men with type 2 diabetes mellitus with marked hypertriglyceridemia. Apolipoprotein B kinetics were assessed at baseline and at the end of the intervention using a primed constant infusion of [5,5,5-D(3)]-l-leucine for 12 hours in the fed state. Fenofibrate significantly decreased plasma TG levels with no significant change in plasma low-density lipoprotein cholesterol (LDL-C) and apo B levels. On the other hand, atorvastatin significantly reduced plasma levels of TG, LDL-C, and apo B. After treatment with fenofibrate, very low-density lipoprotein (VLDL) apo B-100 pool size (PS) was decreased because of an increase in the fractional catabolic rate (FCR) of VLDL apo B-100. No significant change was observed in the kinetics of LDL apo B-100. Moreover, fenofibrate significantly decreased TG-rich lipoprotein (TRL) apo B-48 PS because of a significant increase in TRL apo B-48 FCR. After treatment with atorvastatin, VLDL and IDL apo B-100 PSs were significantly decreased because of significant elevations in the FCR of these subfractions. Low-density lipoprotein apo B-100 PS was significantly lowered because of a tendency toward decreased LDL apo B-100 production rate (PR). Finally, atorvastatin reduced TRL apo B-48 PS because of a significant decrease in the PR of this subfraction. These results indicate that fenofibrate increases TRL apo B-48 as well as VLDL apo B-100 clearance in men with type 2 diabetes mellitus with marked hypertriglyceridemia, whereas atorvastatin increases both VLDL and IDL apo B-100 clearance and decreases TRL apo B-48 and LDL apo B-100 PR.


Differential effect of atorvastatin and fenofibrate on plasma oxidized low-density lipoprotein, inflammation markers, and cell adhesion molecules in patients with type 2 diabetes mellitus.

  • Jean-Charles Hogue‎ et al.
  • Metabolism: clinical and experimental‎
  • 2008‎

Type 2 diabetes mellitus is associated with elevated plasma triglyceride levels, low high-density lipoprotein cholesterol, and a high incidence of cardiovascular disease. Hydroxymethylglutaryl-coenzyme A reductase inhibitors and fibrates are frequently used in the treatment of diabetic dyslipidemia, but their specific impact on the inflammation processes involved in atherosclerosis remains to be fully characterized. The objective of this 2-group parallel study was to investigate the differential effects of a 6-week treatment with either atorvastatin 20 mg/d alone (n = 19) or micronized fenofibrate 200 mg/d alone (n = 19) on inflammation, cell adhesion, and oxidation markers in type 2 diabetes mellitus subjects with marked hypertriglyceridemia. In addition to the expected changes in lipid levels, atorvastatin decreased plasma levels of C-reactive protein (-26.9%, P = .004), soluble intercellular adhesion molecule 1 (-5.4%, P = .03), soluble vascular cell adhesion molecule 1 (-4.4%, P = .008), sE-selectin (-5.7%, P = .02), matrix metalloproteinase 9 (-39.6%, P = .04), secretory phospholipase A(2) (sPLA(2)) (-14.8%, P = .04), and oxidized low-density lipoprotein (-38.4%, P < .0001). On the other hand, fenofibrate had no significant effect on C-reactive protein levels and was associated with reduced plasma levels of sE-selectin only (-6.0%, P = .04) and increased plasma levels of sPLA(2) (+22.5%, P = .004). These results suggest that atorvastatin was potent to reduce inflammation, oxidation, and monocyte adhesion in type 2 diabetes mellitus subjects with marked hypertriglyceridemia, whereas fenofibrate decreased sE-selectin levels only and was associated with an elevation of sPLA(2) levels.


Genome-Wide Association Study of Dietary Pattern Scores.

  • Frédéric Guénard‎ et al.
  • Nutrients‎
  • 2017‎

Dietary patterns, representing global food supplies rather than specific nutrients or food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality. The contribution of genetic factors in the determination of food intakes, preferences and dietary patterns has been previously established. The current study aimed to identify novel genetic factors associated with reported dietary pattern scores. Reported dietary patterns scores were derived from reported dietary intakes for the preceding month and were obtained through a food frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of 141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations (p < 1 × 10-5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these, SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were also observed from SNP-surrounding sequences. Results from the current GWAS study suggest an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose metabolism and food-induced response in the brain in the adoption of dietary patterns.


Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study.

  • Bastien Vallée Marcotte‎ et al.
  • Genes & nutrition‎
  • 2020‎

We previously built a genetic risk score (GRS) highly predictive of the plasma triglyceride (TG) response to an omega-3 fatty acid (n-3 FA) supplementation from marine sources. The objective of the present study was to test the potential of this GRS to predict the plasma TG responsiveness to supplementation with either eicosapentaenoic (EPA) or docosahexaenoic (DHA) acids in the Comparing EPA to DHA (ComparED) Study.


Raspberry consumption: identification of distinct immune-metabolic response profiles by whole blood transcriptome profiling.

  • Maximilien Franck‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2022‎

Numerous studies have reported that diets rich in phenolic compounds are beneficial to immune-metabolic health, yet these effects are heterogeneous and the underlying mechanisms are poorly understood. To investigate the inter-individual variability of the immune-metabolic response to raspberry consumption, whole-blood RNAseq data from 24 participants receiving 280 g/d of raspberries for 8 weeks were used for the identification of responsiveness subgroups by using partial least squares-discriminant analysis (PLSDA) and hierarchical clustering. Transcriptomic-based clustering regrouped participants into two distinct subgroups of 13 and 11 participants, so-called responders and non-responders, respectively. Following raspberry consumption, a significant decrease in triglycerides, cholesterol and C-reactive protein levels were found in responders, as compared to non-responders. Two major gene expression components of 100 and 220 genes were identified by sparse PLSDA as those better discriminating responders from non-responders, and functional analysis identified pathways related to cytokine production, leukocyte activation and immune response as significantly enriched with most discriminant genes. As compared to non-responders, the plasma lipidomic profile of responders was characterized by a significant decrease in triglycerides and an increase in phosphatidylcholines following raspberry consumption. Prior to the intervention, a distinct metagenomic profile was identified by PLSDA between responsiveness subgroups, and the Firmicutes-to-Bacteroidota ratio was found significantly lower in responders, as compared to non-responders. Findings point to this transcriptomic-based clustering approach as a suitable tool to identify distinct responsiveness subgroups to raspberry consumption. This approach represents a promising framework to tackle the issue of inter-individual variability in the understanding of the impact of foods on immune-metabolic health.


An 8-week freeze-dried blueberry supplement impacts immune-related pathways: a randomized, double-blind placebo-controlled trial.

  • Michèle Rousseau‎ et al.
  • Genes & nutrition‎
  • 2021‎

Blueberries contain high levels of polyphenolic compounds with high in vitro antioxidant capacities. Their consumption has been associated with improved vascular and metabolic health.


Revisiting multi-omics-based predictors of the plasma triglyceride response to an omega-3 fatty acid supplementation.

  • Josiane Morin-Bernier‎ et al.
  • Frontiers in nutrition‎
  • 2024‎

The aim of the present study was to identify the metabolomic signature of responders and non-responders to an omega-3 fatty acid (n-3 FA) supplementation, and to test the ability of a multi-omics classifier combining genomic, lipidomic, and metabolomic features to discriminate plasma triglyceride (TG) response phenotypes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: