Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Kdr genotyping (V1016I, F1534C) of the Nav channel of Aedes aegypti (L.) mosquito populations in Harris County (Houston), Texas, USA, after Permanone 31-66 field tests and its influence on probability of survival.

  • Jonathan R Hernandez‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Aedes aegypti (L.) is an important mosquito vector of emerging arboviruses such as Zika, dengue, yellow fever, and chikungunya. To quell potential disease outbreaks, its populations are controlled by applying pyrethroid insecticides, which selection pressure may lead to the development of insecticide resistance. Target site insensitivity to pyrethroids caused by non-synonymous knockdown resistance (kdr) mutations in the voltage-gated sodium (NaV) channel is a predominant mechanism of resistance in mosquitoes. To evaluate the potential impact of pyrethroid resistance on vector control, Ae. aegypti eggs were collected from eight mosquito control operational areas in Harris County, Texas, and emerged females were treated in field tests at four different distances from the pyrethroid Permanone 31-66 source. The females were genotyped by melting curve analyses to detect two kdr mutations (V1016I and F1534C) in the NaV channel. Harris County females had higher survivorship rates at each distance than the pyrethroid-susceptible Orlando strain females. Survivorship increased with distance from the pyrethroid source, with 39% of field-collected mosquitoes surviving at 7.62 m and 82.3% at 22.86 m from the treatment source. Both the V1016I and F1534C pyrethroid resistant genotypes were widely distributed and at high frequency, with 77% of the females being double homozygous resistant (II/CC), this being the first report of kdr mutations in Ae. aegypti in Harris County. Analysis of the probability of survival for each mutation site independently indicated that the CC genotype had similar probability of survival as the FC heterozygous, while the II genotype had higher survival than both the VI and VV, that did not differ. The double homozygous resistant genotype (II/CC) had the highest probability of survival. A linear model estimated probability of survival for areas and genotypes. The high frequency and widespread distribution of double-homozygote pyrethroid-resistant Ae. aegypti may jeopardize disease vector control efforts in Harris County.


Detection of the Nav channel kdr-like mutation and modeling of factors affecting survivorship of Culex quinquefasciatus mosquitoes from six areas of Harris County (Houston), Texas, after permethrin field-cage tests.

  • Han-Jung Lee‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31-66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County.


Impact of the V410L kdr mutation and co-occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA.

  • Jonathan R Hernandez‎ et al.
  • PLoS neglected tropical diseases‎
  • 2023‎

Harris County, TX, is the third most populous county in the USA and upon detection of arboviruses Harris County Public Health applies insecticides (e.g., pyrethroid-based Permanone 31-66) against adults of Culex quinquefasciatus to prevent disease transmission. Populations of Aedes aegypti, while not yet a target of public health control, are likely affected by pyrethroid exposure. As this species is a vector of emerging arboviruses, its resistance status to Permanone and the kdr mutations in the voltage-gated sodium channel (VGSC) associated with pyrethroid resistance were investigated. We examined females of known genotype at the V1016I and F1534C sites (N = 716) for their genotype at the 410 amino acid position in the VGSC, and for the influence of their kdr genotype on survival to Permanone at three different distances from the insecticide source in field tests. Most females (81.8%) had at least one resistant L allele at the 410 position, being the first report of the V410L mutation in Ae. aegypti for Texas. When only genotypes at the 410 position were analyzed, the LL genotype exhibited higher survivorship than VL or VV. Out of 27 possible tri-locus kdr genotypes only 23 were found. Analyses of the probability of survival of tri-locus genotypes and for the V410L genotype using a multivariate logistic regression model including area, distance, and genotype found significant interactions between distance and genotype. When only the most common tri-locus genotypes were analyzed (LL/II/CC, 48.2%; VL/II/CC, 19.1%; and VV/II/CC, 10.1%) genotype had no effect on survival, but significant interactions of distance and genotype were found. This indicated that the V410L kdr allele increased survival probability at certain distances. Genotypes did not differ in survivorship at 7.62-m, but LL/II/CC had higher survivorship than VL/II/CC at 15.24- and 22.86-m. The model also identified differences in survivorship among the operational areas investigated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: