Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Herpesvirus trigger accelerates neuroinflammation in a nonhuman primate model of multiple sclerosis.

  • Emily C Leibovitch‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Pathogens, particularly human herpesviruses (HHVs), are implicated as triggers of disease onset/progression in multiple sclerosis (MS) and other neuroinflammatory disorders. However, the time between viral acquisition in childhood and disease onset in adulthood complicates the study of this association. Using nonhuman primates, we demonstrate that intranasal inoculations with HHV-6A and HHV-6B accelerate an MS-like neuroinflammatory disease, experimental autoimmune encephalomyelitis (EAE). Although animals inoculated intranasally with HHV-6 (virus/EAE marmosets) were asymptomatic, they exhibited significantly accelerated clinical EAE compared with control animals. Expansion of a proinflammatory CD8 subset correlated with post-EAE survival in virus/EAE marmosets, suggesting that a peripheral (viral?) antigen-driven expansion may have occurred post-EAE induction. HHV-6 viral antigen in virus/EAE marmosets was markedly elevated and concentrated in brain lesions, similar to previously reported localizations of HHV-6 in MS brain lesions. Collectively, we demonstrate that asymptomatic intranasal viral acquisition accelerates subsequent neuroinflammation in a nonhuman primate model of MS.


Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis.

  • Riccardo Galbusera‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2023‎

Quantitative MRI (qMRI) probes the microstructural properties of the central nervous system (CNS) by providing biophysical measures of tissue characteristics. In this work, we aimed to (i) identify qMRI measures that distinguish histological lesion types in postmortem multiple sclerosis (MS) brains, especially the remyelinated ones; and to (ii) investigate the relationship between those measures and quantitative histological markers of myelin, axons, and astrocytes in the same experimental setting. Three fixed MS whole brains were imaged with qMRI at 3T to obtain magnetization transfer ratio (MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative susceptibility mapping (QSM), fractional anisotropy (FA) and radial diffusivity (RD) maps. The identification of lesion types (active, inactive, chronic active, or remyelinated) and quantification of tissue components were performed using histological staining methods as well as immunohistochemistry and immunofluorescence. Pairwise logistic and LASSO regression models were used to identify the best qMRI discriminators of lesion types. The association between qMRI and quantitative histological measures was performed using Spearman's correlations and linear mixed-effect models. We identified a total of 65 lesions. MTR and MWF best predicted the chance of a lesion to be remyelinated, whereas RD and QSM were useful in the discrimination of active lesions. The measurement of microstructural properties through qMRI did not show any difference between chronic active and inactive lesions. MWF and RD were associated with myelin content in both lesions and normal-appearing white matter (NAWM), FA was the measure most associated with axon content in both locations, while MWF was associated with astrocyte immunoreactivity only in lesions. Moreover, we provided evidence of extensive astrogliosis in remyelinated lesions. Our study provides new information on the discriminative power of qMRI in differentiating MS lesions -especially remyelinated ones- as well as on the relative association between multiple qMRI measures and myelin, axon and astrocytes.


A New Advanced MRI Biomarker for Remyelinated Lesions in Multiple Sclerosis.

  • Reza Rahmanzadeh‎ et al.
  • Annals of neurology‎
  • 2022‎

Neuropathological studies have shown that multiple sclerosis (MS) lesions are heterogeneous in terms of myelin/axon damage and repair as well as iron content. However, it remains a challenge to identify specific chronic lesion types, especially remyelinated lesions, in vivo in patients with MS.


Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper.

  • Benjamin V Ineichen‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

Magnetic resonance imaging (MRI) is the most important paraclinical tool for assessing drug response in multiple sclerosis (MS) clinical trials. As such, MRI has also been widely used in preclinical research to investigate drug efficacy and pathogenic aspects in MS animal models. Keeping track of all published preclinical imaging studies, and possible new therapeutic approaches, has become difficult considering the abundance of studies. Moreover, comparisons between studies are hampered by methodological differences, especially since small differences in an MRI protocol can lead to large differences in tissue contrast. We therefore provide a comprehensive qualitative overview of preclinical MRI studies in the field of neuroinflammatory and demyelinating diseases, aiming to summarize experimental setup, MRI methodology, and risk of bias. We also provide estimates of the effects of tested therapeutic interventions by a meta-analysis. Finally, to improve the standardization of preclinical experiments, we propose guidelines on technical aspects of MRI and reporting that can serve as a framework for future preclinical studies using MRI in MS animal models. By implementing these guidelines, clinical translation of findings will be facilitated, and could possibly reduce experimental animal numbers.


Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging.

  • Reza Rahmanzadeh‎ et al.
  • Brain : a journal of neurology‎
  • 2021‎

Damage to the myelin sheath and the neuroaxonal unit is a cardinal feature of multiple sclerosis; however, a detailed characterization of the interaction between myelin and axon damage in vivo remains challenging. We applied myelin water and multi-shell diffusion imaging to quantify the relative damage to myelin and axons (i) among different lesion types; (ii) in normal-appearing tissue; and (iii) across multiple sclerosis clinical subtypes and healthy controls. We also assessed the relation of focal myelin/axon damage with disability and serum neurofilament light chain as a global biological measure of neuroaxonal damage. Ninety-one multiple sclerosis patients (62 relapsing-remitting, 29 progressive) and 72 healthy controls were enrolled in the study. Differences in myelin water fraction and neurite density index were substantial when lesions were compared to healthy control subjects and normal-appearing multiple sclerosis tissue: both white matter and cortical lesions exhibited a decreased myelin water fraction and neurite density index compared with healthy (P < 0.0001) and peri-plaque white matter (P < 0.0001). Periventricular lesions showed decreased myelin water fraction and neurite density index compared with lesions in the juxtacortical region (P < 0.0001 and P < 0.05). Similarly, lesions with paramagnetic rims showed decreased myelin water fraction and neurite density index relative to lesions without a rim (P < 0.0001). Also, in 75% of white matter lesions, the reduction in neurite density index was higher than the reduction in the myelin water fraction. Besides, normal-appearing white and grey matter revealed diffuse reduction of myelin water fraction and neurite density index in multiple sclerosis compared to healthy controls (P < 0.01). Further, a more extensive reduction in myelin water fraction and neurite density index in normal-appearing cortex was observed in progressive versus relapsing-remitting participants. Neurite density index in white matter lesions correlated with disability in patients with clinical deficits (P < 0.01, beta = -10.00); and neurite density index and myelin water fraction in white matter lesions were associated to serum neurofilament light chain in the entire patient cohort (P < 0.01, beta = -3.60 and P < 0.01, beta = 0.13, respectively). These findings suggest that (i) myelin and axon pathology in multiple sclerosis is extensive in both lesions and normal-appearing tissue; (ii) particular types of lesions exhibit more damage to myelin and axons than others; (iii) progressive patients differ from relapsing-remitting patients because of more extensive axon/myelin damage in the cortex; and (iv) myelin and axon pathology in lesions is related to disability in patients with clinical deficits and global measures of neuroaxonal damage.


Susceptibility-based imaging aids accurate distinction of pediatric-onset MS from myelin oligodendrocyte glycoprotein antibody-associated disease.

  • Simone Sacco‎ et al.
  • Multiple sclerosis (Houndmills, Basingstoke, England)‎
  • 2023‎

Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) and pediatric-onset multiple sclerosis (POMS) share clinical and magnetic resonance imaging (MRI) features but differ in prognosis and management. Early POMS diagnosis is essential to avoid disability accumulation. Central vein sign (CVS), paramagnetic rim lesions (PRLs), and central core lesions (CCLs) are susceptibility-based imaging (SbI)-related signs understudied in pediatric populations that may help discerning POMS from MOGAD.


A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain.

  • Jing-Ping Lin‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.


Central Vein Sign Profile of Newly Developing Lesions in Multiple Sclerosis: A 3-Year Longitudinal Study.

  • Omar Al-Louzi‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2022‎

The central vein sign (CVS), a central linear hypointensity within lesions on T2*-weighted imaging, has been established as a sensitive and specific biomarker for the diagnosis of multiple sclerosis (MS). However, the CVS has not yet been comprehensively studied in newly developing MS lesions. We aimed to identify the CVS profiles of new white matter lesions in patients with MS followed over time and investigate demographic and clinical risk factors associated with new CVS+ or CVS- lesion development.


7T MRI Differentiates Remyelinated from Demyelinated Multiple Sclerosis Lesions.

  • Hadar Kolb‎ et al.
  • Annals of neurology‎
  • 2021‎

To noninvasively assess myelin status in chronic white matter lesions of multiple sclerosis (MS), we developed and evaluated a simple classification scheme based on T1 relaxation time maps derived from 7-tesla postmortem and in vivo MRI.


Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis.

  • Pietro Maggi‎ et al.
  • Neurology‎
  • 2021‎

To assess whether chronic white matter inflammation in patients with multiple sclerosis (MS) as detected in vivo by paramagnetic rim MRI lesions (PRLs) is associated with higher serum neurofilament light chain (sNfL) levels, a marker of neuroaxonal damage.


"Central vessel sign" on 3T FLAIR* MRI for the differentiation of multiple sclerosis from migraine.

  • Andrew J Solomon‎ et al.
  • Annals of clinical and translational neurology‎
  • 2016‎

The diagnosis of multiple sclerosis (MS) presently relies on radiographic assessments of imperfect specificity. Recent data using T2* methodology for the detection of the "central vessel sign" (CVS) in MS lesions suggests this novel MRI technique may distinguish MS from other disorders. Our aim was to determine if evaluation for CVS on 3T FLAIR* MRI differentiates MS from migraine.


Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies.

  • Pietro Maggi‎ et al.
  • Annals of neurology‎
  • 2018‎

In multiple sclerosis (MS), magnetic resonance imaging (MRI) is a sensitive tool for detecting white matter lesions, but its diagnostic specificity is still suboptimal; ambiguous cases are frequent in clinical practice. Detection of perivenular lesions in the brain (the "central vein sign") improves the pathological specificity of MS diagnosis, but comprehensive evaluation of this MRI biomarker in MS-mimicking inflammatory and/or autoimmune diseases, such as central nervous system (CNS) inflammatory vasculopathies, is lacking. In a multicenter study, we assessed the frequency of perivenular lesions in MS versus systemic autoimmune diseases with CNS involvement and primary angiitis of the CNS (PACNS).


Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets.

  • Joseph R Guy‎ et al.
  • Journal of neuroscience methods‎
  • 2016‎

MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI.


RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis.

  • Germán Barquero‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

In multiple sclerosis (MS), the presence of a paramagnetic rim at the edge of non-gadolinium-enhancing lesions indicates perilesional chronic inflammation. Patients featuring a higher paramagnetic rim lesion burden tend to have more aggressive disease. The objective of this study was to develop and evaluate a convolutional neural network (CNN) architecture (RimNet) for automated detection of paramagnetic rim lesions in MS employing multiple magnetic resonance (MR) imaging contrasts.


From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions.

  • Hadar Kolb‎ et al.
  • NeuroImage. Clinical‎
  • 2022‎

Focal lesions in both white and gray matter are characteristic of multiple sclerosis (MS). Histopathological studies have helped define the main underlying pathological processes involved in lesion formation and evolution, serving as a gold standard for many years. However, histopathology suffers from an intrinsic bias resulting from over-reliance on tissue samples from late stages of the disease or atypical cases and is inadequate for routine patient assessment. Pathological-radiological correlative studies have established advanced MRI's sensitivity to several relevant MS-pathological substrates and its practicality for assessing dynamic changes and following lesions over time. This review focuses on novel imaging techniques that serve as biomarkers of critical pathological substrates of MS lesions: the central vein, chronic inflammation, remyelination and repair, and cortical lesions. For each pathological process, we address the correlative value of MRI to MS pathology, its contribution in elucidating MS pathology in vivo, and the clinical utility of the imaging biomarker.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: