Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Knock-In Mice Expressing a 15-Lipoxygenating Alox5 Mutant Respond Differently to Experimental Inflammation Than Reported Alox5-/- Mice.

  • Eugenia Marbach-Breitrück‎ et al.
  • Metabolites‎
  • 2021‎

Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5-/- mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5-/- animals tested previously in similar experimental setups.


EasyModeller: A graphical interface to MODELLER.

  • Bhusan K Kuntal‎ et al.
  • BMC research notes‎
  • 2010‎

MODELLER is a program for automated protein Homology Modeling. It is one of the most widely used tool for homology or comparative modeling of protein three-dimensional structures, but most users find it a bit difficult to start with MODELLER as it is command line based and requires knowledge of basic Python scripting to use it efficiently.


Draft Genome Sequence of the Field Isolate Brucella melitensis Strain Bm IND1 from India.

  • Sashi Bhushan Rao‎ et al.
  • Genome announcements‎
  • 2014‎

Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus.


Synthesis, Characterization, and Biodistribution of Quantum Dot-Celecoxib Conjugate in Mouse Paw Edema Model.

  • Suresh K Kalangi‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Increased risk of cardiovascular side effects has been reported with many of the drugs in the market, including nonsteroidal anti-inflammatory drugs (NSAIDs). Hence, it is critical to thoroughly evaluate the biodistribution and pharmacokinetic properties of the drugs. Presently nanotechnology in combination with noninvasive imaging techniques such as magnetic resonance imaging (MRI), computed axial tomography (CAT), and positron emission tomography (PET) provides a better estimate of the spatio-temporal distribution of therapeutic molecules. Optical imaging using quantum dot- (QD-) tagged biological macromolecules is emerging as a fast, economical, sensitive, and safer alternative for theranostic purposes. In the present study, we report the nanoconjugates of mercaptopropionic acid- (MPA-) capped CdTe quantum dots (QDs) and Celecoxib for bio-imaging in carrageenan-induced mouse paw edema model of inflammation. QD-Celecoxib conjugates were characterized by fluorescence, FT-IR, NMR, and zeta-potential studies. In vivo imaging of QD-Celecoxib conjugates showed clear localization in the inflamed tissue of mouse paw within 3 h, with a gradual increase reaching a maximum and a later decline. This decrease of fluorescence in the paw region is followed by an increase in urinary bladder region, suggesting the possible excretion of QD-drug conjugates from mice within 24 h.


Exploration of binding site pattern in arachidonic acid metabolizing enzymes, Cyclooxygenases and Lipoxygenases.

  • Kakularam Kumar Reddy‎ et al.
  • BMC research notes‎
  • 2015‎

Cyclooxygenase (COXs) and Lipoxygenase (LOXs) pathways are the two major enzymatic pathways in arachidonic acid (AA) metabolism. The term eicosanoid is used to describe biologically active lipid mediators including prostaglandins, thromboxanes, leukotrienes and other oxygenated derivatives, which are produced primarily from AA. Eicosanoids generated in a tissue specific manner play a key role in inflammation and cancer. As AA is the substrate common to variety of COXs and LOXs, inhibition of one pathway results in diversion of the substrate to other pathways, which often is responsible for undesirable side effects. Hence there is need for development of not only isozyme specific inhibitors but also dual/multi enzyme inhibitors. Understanding the interactions of AA and characterizing its binding sites in these enzymes therefore is crucial for developing enzyme specific and multi enzyme inhibitors for enhancing therapeutic efficacy and/or overcoming side effects.


15-LOX metabolites and angiogenesis: angiostatic effect of 15(S)-HPETE involves induction of apoptosis in adipose endothelial cells.

  • Sasikumar J Soumya‎ et al.
  • PeerJ‎
  • 2014‎

Inflammation is critical in the dysregulated growth of adipose tissue and associated vascular dysfunctions. 15-Lipoxygenase metabolites, important mediators of inflammation in adipose tissue during obese conditions, may contribute to codependence of inflammation and angiogenesis in adipose tissue. We have already reported the pro-angiogenic effect of 15(S)-HETE in adipose tissue. The present study was designed to understand the effect of 15(S)-HPETE, precursor of 15(S)-HETE, on angiogenesis in adipose tissue. Results showed that 15(S)-HPETE exerts an anti-angiogenic effect in adipose tissue. This was evidenced from decreased endothelial sprouting in adipose tissue explants, inhibition of angiogenic phenotype in adipose endothelial cells, decreased production of CD31 and VEGF in endothelial cells treated with 15(S)-HPETE. Further studies to examine the molecular mechanism of anti-angiogenic effect of 15(S)-HPETE showed that it inhibited cell survival signaling molecule Akt and anti-apoptotic Bcl-2 and also activated caspase-3 in adipose endothelial cells. These observations indicate that 15(S)-HPETE exerts its angiostatic effect in adipose tissue by inducing apoptosis of endothelial cells.


15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome.

  • Naresh Kumar‎ et al.
  • Scientific reports‎
  • 2016‎

The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE.


Molecular basis for the catalytic inactivity of a naturally occurring near-null variant of human ALOX15.

  • Thomas Horn‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Mammalian lipoxygenases belong to a family of lipid-peroxidizing enzymes, which have been implicated in cardiovascular, hyperproliferative and neurodegenerative diseases. Here we report that a naturally occurring mutation in the hALOX15 gene leads to expression of a catalytically near-null enzyme variant (hGly422Glu). The inactivity may be related to severe misfolding of the enzyme protein, which was concluded from CD-spectra as well as from thermal and chemical stability assays. In silico mutagenesis experiments suggest that most mutations at hGly422 have the potential to induce sterical clash, which might be considered a reason for protein misfolding. hGly422 is conserved among ALOX5, ALOX12 and ALOX15 isoforms and corresponding hALOX12 and hALOX5 mutants also exhibited a reduced catalytic activity. Interestingly, in the hALOX5 Gly429Glu mutants the reaction specificity of arachidonic acid oxygenation was shifted from 5S- to 8S- and 12R-H(p)ETE formation. Taken together, our data indicate that the conserved glycine is of functional importance for these enzyme variants and most mutants at this position lose catalytic activity.


Formation of acetaldehyde adducts of glutathione S-transferase A3 in the liver of rats administered alcohol chronically.

  • Rukhsana Sultana‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2005‎

Hepatic tissue damage induced by chronic exposure to alcohol is mediated through acetaldehyde and associated with reactive oxygen species, which impair cellular defense mechanisms. Because glutathione S-transferases (GSTs) play an important role in the detoxification of xenobiotics and reactive oxygen species, the current study was undertaken to test the effect of alcohol administration on structural and functional characteristics of rat (r) liver Alpha class rGSTs. Western blot analysis revealed an appreciable change in the expression of rGSTA3 subunit levels, whereas no change was observed in activity after chronic alcohol treatment. Reverse-phase high performance liquid chromatographic analysis of rat liver GSTs that were affinity purified with glutathione showed a 1.07-fold increase in rGSTA3 subunit levels in rats treated with alcohol chronically. In addition, liquid chromatographic-electrospray ionization mass spectrometric analysis of GSTs that were affinity purified with glutathione showed the formation of acetaldehyde adducts to the rGSTA3 subunit. Given the abundant expression of rGSTA3 subunit and acetaldehyde adduct formation, results of the current study support the suggestion that modification of rGSTA3 subunit, and thus its impaired function, in alcohol-exposed rats may contribute to the progression of alcohol-induced liver damage.


Anti-inflammatory profile of Aegle marmelos (L) Correa (Bilva) with special reference to young roots grown in different parts of India.

  • Azad Rajaram‎ et al.
  • Journal of Ayurveda and integrative medicine‎
  • 2018‎

Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns.


Milk exosomes elicit a potent anti-viral activity against dengue virus.

  • Vengala Rao Yenuganti‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Exosomes are nano-sized vesicles secreted by various cells into the intra and extracellular space and hence is an integral part of biological fluids including milk. In the last few decades, many research groups have proved the potential of milk exosomes as a sustainable, economical and non-immunogenic drug delivery and therapeutic agent against different pathological conditions. However, its anti-viral properties still remain to be unearthed.


Sophora interrupta Bedd. root-derived flavonoids as prominent antiviral agents against Newcastle disease virus.

  • Cherukupalle Bhuvaneswar‎ et al.
  • RSC advances‎
  • 2020‎

The discovery and development of novel antiviral drugs from natural sources is continuously increasing due to limitations of currently available drugs such as toxic side effects, drug residue risk factors, high costs, and poor therapeutic strategies. Also, there are very few known antiviral drugs that are effective against only specific viruses. Hence, the present study is intended to isolate and characterize potent antiviral compounds from the methanolic root extract of Sophora interrupta Bedd. against avian paramyxovirus, Newcastle disease virus (NDV) and to distinguish the molecular basis of antiviral compounds. The two isolated flavonoids, maackiain (SR-1) and echinoisoflavanone (SR-2) exhibited the best antiviral activities against NDV infection in chicken embryo fibroblast cell lines compared to the standard antiviral drug, Ribavirin. Further, the in vitro studies and quantitative PCR analysis suggests that these flavonoids inhibit the viral entry, replication, and transcription, which may be beneficial as a promising strategy for the treatment of viral infections. Besides, the molecular docking studies of SR-1 and SR-2 exhibited high binding affinities of -7.6 and -8.0 kcal mol-1, respectively, and marked interactions with the NDV surface glycoprotein, hemagglutinin neuraminidase (HN). Also, the in silico toxicity properties as well pharmacokinetic studies of isolates revealed them as pharmacologically potent antiviral compounds.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: