Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

A fragment of the alarmin prothymosin α as a novel biomarker in murine models of bacteria-induced sepsis.

  • Pinelopi Samara‎ et al.
  • Oncotarget‎
  • 2017‎

Sepsis is a life-threatening condition that requires urgent care. Thus, the identification of specific and sensitive biomarkers for its early diagnosis and management are of clinical importance. The alarmin prothymosin alpha (proTα) and its decapeptide proTα(100-109) are immunostimulatory peptides related to cell death. In this study, we generated bacterial models of sepsis in mice using two Klebsiella pneumoniae strains (L-78 and ATCC 43816) and monitored sepsis progression using proTα(100-109) as a biomarker. Serum concentration of proTα(100-109) gradually increased as sepsis progressed in mice infected with L-78, a strain which, unlike ATCC 43816, was phagocytosed by monocytes/macrophages. Analysis of splenocytes from L-78-infected animals revealed that post-infection spleen monocytes/macrophages were gradually driven to caspase-3-mediated apoptosis. These results were verified in vitro in L-78-infected human monocytes/macrophages. Efficient phagocytosis of L-78 by monocytes stimulated their apoptosis and the concentration of proTα(100-109) in culture supernatants increased. Human macrophages strongly phagocytosed L-78, but resisted cell death. This is the first report suggesting that high levels of proTα(100-109) correlate, both in vitro and in vivo, with increased percentages of cell apoptosis. Moreover, we showed that low levels of proTα(100-109) early post-infection likely correlate with sepsis resolution and thus, the decapeptide could eventually serve as an early surrogate biomarker for predicting bacteria-induced sepsis outcome.


Antitumor Reactive T-Cell Responses Are Enhanced In Vivo by DAMP Prothymosin Alpha and Its C-Terminal Decapeptide.

  • Anastasios I Birmpilis‎ et al.
  • Cancers‎
  • 2019‎

Prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) were shown to pleiotropically enhance innate and adaptive immune responses. Their activities have been broadly studied in vitro, focusing primarily on the restoration of the deficient immunoreactivity of cancer patients' leukocytes. Previously, we showed that proTα and proTα(100-109) act as danger-associated molecular patterns (DAMPs), ligate Toll-like receptor-4, signal through TRIF- and MyD88-dependent pathways, promote the maturation of dendritic cells and elicit T-helper type 1 (Th1) immune responses in vitro, leading to the optimal priming of tumor antigen-reactive T-cell functions. Herein, we assessed their activity in a preclinical melanoma model. Immunocompetent mice bearing B16.F1 tumors were treated with two cycles of proTα or proTα(100-109) together with a B16.F1-derived peptide vaccine. Coadministration of proTα or proTα(100-109) and the peptide vaccine suppressed melanoma-cell proliferation, as evidenced by reduced tumor-growth rates. Higher melanoma infiltration by CD3+ T cells was observed, whereas ex vivo analysis of mouse total spleen cells verified the in vivo induction of melanoma-reactive cytotoxic responses. Additionally, increased levels of proinflammatory and Th1-type cytokines were detected in mouse serum. We propose that, in the presence of tumor antigens, DAMPs proTα and proTα(100-109) induce Th1-biased immune responses in vivo. Their adjuvant ability to orchestrate antitumor immunoreactivities can eventually be exploited therapeutically in humans.


Characterization of a PERK Kinase Inhibitor with Anti-Myeloma Activity.

  • Tina Bagratuni‎ et al.
  • Cancers‎
  • 2020‎

Due to increased immunoglobulin production and uncontrolled proliferation, multiple myeloma (MM) plasma cells develop a phenotype of deregulated unfolded protein response (UPR). The eIF2-alpha kinase 3 [EIF2αK3, protein kinase R (PKR)-like ER kinase (PERK)], the third known sensor of endoplasmic reticulum (ER) stress, is a serine-threonine kinase and, like the other two UPR-related proteins, i.e., IRE1 and ATF6, it is bound to the ER membrane. MM, like other tumors showing uncontrolled protein secretion, is highly dependent to UPR for survival; thus, inhibition of PERK can be an effective strategy to suppress growth of malignant plasma cells. Here, we have used GSK2606414, an ATP-competitive potent PERK inhibitor, and found significant anti-proliferative and apoptotic effects in a panel of MM cell lines. These effects were accompanied by the downregulation of key components of the PERK pathway as well as of other UPR elements. Consistently, PERK gene expression silencing significantly increased cell death in MM cells, highlighting the importance of PERK signaling in MM biology. Moreover, GSK2606414, in combination with the proteasome inhibitor bortezomib, exerted an additive toxic effect in MM cells. Overall, our data suggest that PERK inhibition could represent a novel combinatorial therapeutic approach in MM.


Distinct type I interferon responses between younger women and older men contribute to the variability of COVID-19 outcomes: Hypothesis generating insights from COVID-19 convalescent individuals.

  • Clio P Mavragani‎ et al.
  • Cytokine‎
  • 2022‎

Older age and male sex have been consistently found to be associated with dismal outcomes among COVID-19 infected patients. In contrast, premenopausal females present the lowest mortality among adults infected by SARS-CoV-2. The goal of the present study was to investigate whether peripheral blood type I interferon (IFN) signature and interleukin (IL)-6 serum levels -previously shown to contribute to COVID-19-related outcomes in hospitalized patients- is shaped by demographic contributors among COVID-19 convalescent individuals.


Molecular responses to therapeutic proteasome inhibitors in multiple myeloma patients are donor-, cell type- and drug-dependent.

  • Eleni-Dimitra Papanagnou‎ et al.
  • Oncotarget‎
  • 2018‎

Proteasome is central to proteostasis network functionality and its over-activation represents a hallmark of advanced tumors; thus, its selective inhibition provides a strategy for the development of novel antitumor therapies. In support, proteasome inhibitors, e.g. Bortezomib or Carfilzomib have demonstrated clinical efficacy against hematological cancers. Herein, we studied proteasome regulation in peripheral blood mononuclear cells and erythrocytes isolated from healthy donors or from Multiple Myeloma patients treated with Bortezomib or Carfilzomib. In healthy donors we found that peripheral blood mononuclear cells express higher, as compared to erythrocytes, basal proteasome activities, as well as that proteasome activities decline during aging. Studies in cells isolated from Multiple Myeloma patients treated with proteasome inhibitors revealed that in most (but, interestingly enough, not all) patients, proteasome activities decline in both cell types during therapy. In peripheral blood mononuclear cells, most proteostatic genes expression patterns showed a positive correlation during therapy indicating that proteostasis network modules likely respond to proteasome inhibition as a functional unit. Finally, the expression levels of antioxidant, chaperone and aggresomes removal/autophagy genes were found to inversely associate with patients' survival. Our studies will support a more personalized therapeutic approach in hematological malignancies treated with proteasome inhibitors.


From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis.

  • Aikaterini F Giannopoulou‎ et al.
  • Cancers‎
  • 2021‎

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.


Malignancy Grade-Dependent Mapping of Metabolic Landscapes in Human Urothelial Bladder Cancer: Identification of Novel, Diagnostic, and Druggable Biomarkers.

  • Aikaterini Iliou‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Urothelial bladder cancer (UBC) is one of the cancers with the highest mortality rate and prevalence worldwide; however, the clinical management of the disease remains challenging. Metabolomics has emerged as a powerful tool with beneficial applications in cancer biology and thus can provide new insights on the underlying mechanisms of UBC progression and/or reveal novel diagnostic and therapeutic schemes.


Clusterin overexpression in mice exacerbates diabetic phenotypes but suppresses tumor progression in a mouse melanoma model.

  • Christina Cheimonidi‎ et al.
  • Aging‎
  • 2021‎

Clusterin (CLU) is an ATP-independent small heat shock protein-like chaperone, which functions both intra- and extra-cellularly. Consequently, it has been functionally involved in several physiological (including aging), as well as in pathological conditions and most age-related diseases, e.g., cancer, neurodegeneration, and metabolic syndrome. To address CLU function at an in vivo model we established CLU transgenic (Tg) mice bearing ubiquitous or pancreas-targeted CLU overexpression (OE). Our downstream analyses in established Tg lines showed that ubiquitous or pancreas-targeted CLU OE in mice affected antioxidant, proteostatic and metabolic pathways. Targeted OE of CLU in the pancreas, which also resulted in CLU upregulation in the liver likely via systemic effects, increased basal glucose levels in the circulation and exacerbated diabetic phenotypes. Furthermore, by establishing a syngeneic melanoma mouse tumor model we found that ubiquitous CLU OE suppressed melanoma cells growth, indicating a likely tumor suppressor function in early phases of tumorigenesis. Our observations provide in vivo evidence corroborating the notion that CLU is a potential modulator of metabolic and/or proteostatic pathways playing an important role in diabetes and tumorigenesis.


Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming.

  • Ioannis S Pateras‎ et al.
  • Journal of translational medicine‎
  • 2023‎

Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized.


ISO-66, a novel inhibitor of macrophage migration, shows efficacy in melanoma and colon cancer models.

  • Kyriaki Ioannou‎ et al.
  • International journal of oncology‎
  • 2014‎

Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine, which possesses a contributing role in cancer progression and metastasis and, thus, is now considered a promising anticancer drug target. Many MIF-inactivating strategies have proven successful in delaying cancer growth. Here, we report on the synthesis of ISO-66, a novel, highly stable, small-molecule MIF inhibitor, an analog of ISO-1 with improved characteristics. The MIF:ISO-66 co-crystal structure demonstrated that ISO-66 ligates the tautomerase active site of MIF, which has previously been shown to play an important role in its biological functions. In vitro, ISO-66 enhanced specific and non-specific anticancer immune responses, whereas prolonged administration of ISO-66 in mice with established syngeneic melanoma or colon cancer was non-toxic and resulted in a significant decrease in tumor burden. Subsequent ex vivo analysis of mouse splenocytes revealed that the observed decrease in tumor growth rates was likely mediated by the selective in vivo expansion of antitumor-reactive effector cells induced by ISO-66. Compared to other MIF-inactivating strategies employed in vivo, the anticancer activity of ISO-66 is demonstrated to be of equal or better efficacy. Our findings suggest that targeting MIF, via highly specific and stable compounds, such as ISO-66, may be effective for cancer treatment and stimulation of anticancer immune responses.


Phenoxodiol, an anticancer isoflavene, induces immunomodulatory effects in vitro and in vivo.

  • Sylvianna Georgaki‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Phenoxodiol (PXD) is a synthetic analogue of the plant isoflavone genistein with improved anticancer efficacy. Various properties and mechanisms of action have been attributed to the drug, the most important being its ability to sensitize resistant tumour cells to chemotherapy, which led to its fast track FDA approval for phase II/III clinical trials. In this study, we examined the effects of PXD on human peripheral blood mononuclear cells (PBMC) and its potential role in regulating immune responses. We show that PXD, at concentrations >or=1 microg/ml (4 microM), inhibited proliferation and reduced the viability of healthy donor-derived PBMC. In contrast, lower PXD concentrations (0.05-0.5 microg/ml) augmented, upon 3-day incubation, PBMC cytotoxicity. Experiments with purified CD56(+) lymphocytes revealed that PXD enhanced the lytic function of natural killer (NK) cells by directly stimulating this lymphocytic subpopulation. Furthermore, in an in vivo colon cancer model, Balb/C mice administered low-dose PXD, exhibited significantly reduced tumour growth rates and prolonged survival (in 40% of the animals). Ex vivo results showed that PXD stimulated both NK and tumour-specific cell lytic activity. We conclude that PXD, when administered at low concentrations, can act as an immunomodulator, enhancing impaired immune responses, often seen in cancer-bearing individuals.


Antiproliferative Activity of (-)-Rabdosiin Isolated from Ocimum sanctum L.

  • Alexandros Flegkas‎ et al.
  • Medicines (Basel, Switzerland)‎
  • 2019‎

Background: Ocimum sanctum L. (holy basil; Tulsi in Hindi) is an important medicinal plant, traditionally used in India. Methods: The phytochemical study of the nonpolar (dichloromethane 100%) and polar (methanol:water; 7:3) extracts yielded fourteen compounds. Compounds 6, 7, 9, 11, 12, and 13, along with the methanol:water extract were evaluated for their cytotoxicity against the human cancer cell lines MCF-7, SKBR3, and HCT-116, and normal peripheral blood mononuclear cells (PBMCs). Results: Five terpenoids, namely, ursolic acid (1), oleanolic acid (2), betulinic acid (3), stigmasterol (4), and β-caryophyllene oxide (5); two lignans, i.e., (-)-rabdosiin (6) and shimobashiric acid C (7); three flavonoids, luteolin (8), its 7-O-β-D-glucuronide (9), apigenin 7-O-β-D-glucuronide (10); and four phenolics, (E)-p-coumaroyl 4-O-β-D-glucoside (11), 3-(3,4-dihydroxyphenyl) lactic acid (12), protocatechuic acid (13), and vanillic acid (14) were isolated. Compound 6 was the most cytotoxic against the human cancer lines assessed and showed very low cytotoxicity against PBMCs. Conclusions: Based on these results, the structure of compound 6 shows some promise as a selective anticancer drug scaffold.


Deep Phenotyping Reveals Distinct Immune Signatures Correlating with Prognostication, Treatment Responses, and MRD Status in Multiple Myeloma.

  • Konstantinos Papadimitriou‎ et al.
  • Cancers‎
  • 2020‎

Despite recent advances, Multiple Myeloma (MM) remains an incurable disease with apparent heterogeneity that may explain patients' variable clinical outcomes. While the phenotypic, (epi)genetic, and molecular characteristics of myeloma cells have been thoroughly examined, there is limited information regarding the role of the bone marrow (BM) microenvironment in the natural history of the disease. In the present study, we performed deep phenotyping of 32 distinct immune cell subsets in a cohort of 94 MM patients to reveal unique immune profiles in both BM and peripheral blood (PB) that characterize distinct prognostic groups, responses to induction treatment, and minimal residual disease (MRD) status. Our data show that PB cells do not reflect the BM microenvironment and that the two sites should be studied independently. Adverse ISS stage and high-risk cytogenetics were correlated with distinct immune profiles; most importantly, BM signatures comprised decreased tumor-associated macrophages (TAMs) and erythroblasts, whereas the unique Treg signatures in PB could discriminate those patients achieving complete remission after VRd induction therapy. Moreover, MRD negative status was correlated with a more experienced CD4- and CD8-mediated immunity phenotype in both BM and PB, thus highlighting a critical role of by-stander cells linked to MRD biology.


Seroprevalence of Antibodies against SARS-CoV-2 among the Personnel and Students of the National and Kapodistrian University of Athens, Greece: A Preliminary Report.

  • Ourania E Tsitsilonis‎ et al.
  • Life (Basel, Switzerland)‎
  • 2020‎

Due to early implementation of public health measures, Greece had low number of SARS-CoV-2 infections and COVID-19 severe incidents in hospitalized patients. The National and Kapodistrian University of Athens (ΝΚUA), especially its health-care/medical personnel, has been actively involved in the first line of state responses to COVID-19. To estimate the prevalence of antibodies (Igs) against SARS-CoV-2 among NKUA members, we designed a five consecutive monthly serosurvey among randomly selected NKUA consenting volunteers. Here, we present the results from the first 2500 plasma samples collected during June-July 2020. Twenty-five donors were tested positive for anti-SARS-CoV-2 Igs; thus, the overall seroprevalence was 1.00%. The weighted overall seroprevalence was 0.93% (95% CI: 0.27, 2.09) and varied between males [1.05% (95% CI: 0.18, 2.92)] and females [0.84% (95% CI: 0.13, 2.49)], age-groups and different categories (higher in participants from the School of Health Sciences and in scientific affiliates/faculty members/laboratory assistants), but no statistical differences were detected. Although focused on the specific population of NKUA members, our study shows that the prevalence of anti-SARS-CoV-2 Igs for the period June-July 2020 remained low and provides knowledge of public health importance for the NKUA members. Given that approximately one in three infections was asymptomatic, continuous monitoring of the progression of the pandemic by assessing Ig seroprevalence is needed.


Peripheral Blood Immune Profiling of Convalescent Plasma Donors Reveals Alterations in Specific Immune Subpopulations Even at 2 Months Post SARS-CoV-2 Infection.

  • Nikolaos Orologas-Stavrou‎ et al.
  • Viruses‎
  • 2020‎

Immune profiling of patients with COVID-19 has shown that SARS-CoV-2 causes severe lymphocyte deficiencies (e.g., lymphopenia, decreased numbers, and exhaustion of T cells) and increased levels of pro-inflammatory monocytes. Peripheral blood (PB) samples from convalescent plasma (CP) donors, COVID-19 patients, and control subjects were analyzed by multiparametric flow cytometry, allowing the identification of a wide panel of immune cells, comprising lymphocytes (T, B, natural killer (NK) and NKT cells), monocytes, granulocytes, and their subsets. Compared to active COVID-19 patients, our results revealed that the immune profile of recovered donors was restored for most subpopulations. Nevertheless, even 2 months after recovery, CP donors still had reduced levels of CD4+ T and B cells, as well as granulocytes. CP donors with non-detectable levels of anti-SARS-CoV-2-specific antibodies in their serum were characterized by higher Th9 and Th17 cells, which were possibly expanded at the expense of Th2 humoral immunity. The most noticeable alterations were identified in previously hospitalized CP donors, who presented the lowest levels of CD8+ regulatory T cells, the highest levels of CD56+CD16- NKT cells, and a promotion of a Th17-type phenotype, which might be associated with a prolonged pro-inflammatory response. A longer follow-up of CP donors will eventually reveal the time needed for full recovery of their immune system competence.


Non-lethal proteasome inhibition activates pro-tumorigenic pathways in multiple myeloma cells.

  • Aikaterini Skorda‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Multiple myeloma (MM) is a haematological malignancy being characterized by clonal plasma cell proliferation in the bone marrow. Targeting the proteasome with specific inhibitors (PIs) has been proven a promising therapeutic strategy and PIs have been approved for the treatment of MM and mantle-cell lymphoma; yet, while outcome has improved, most patients inevitably relapse. As relapse refers to MM cells that survive therapy, we sought to identify the molecular responses induced in MM cells after non-lethal proteasome inhibition. By using bortezomib (BTZ), epoxomicin (EPOX; a carfilzomib-like PI) and three PIs, namely Rub999, PR671A and Rub1024 that target each of the three proteasome peptidases, we found that only BTZ and EPOX are toxic in MM cells at low concentrations. Phosphoproteomic profiling after treatment of MM cells with non-lethal (IC10 ) doses of the PIs revealed inhibitor- and cell type-specific readouts, being marked by the activation of tumorigenic STAT3 and STAT6. Consistently, cytokine/chemokine profiling revealed the increased secretion of immunosuppressive pro-tumorigenic cytokines (IL6 and IL8), along with the inhibition of potent T cell chemoattractant chemokines (CXCL10). These findings indicate that MM cells that survive treatment with therapeutic PIs shape a pro-tumorigenic immunosuppressive cellular and secretory bone marrow microenvironment that enables malignancy to relapse.


Visualization and analysis of the interaction network of proteins associated with blood-cell targeting autoimmune diseases.

  • Athina I Amanatidou‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

Blood-cell targeting Autoimmune Diseases (BLADs) are complex diseases that affect blood cell formation or prevent blood cell production. Since these clinical conditions are gathering growing attention, experimental approaches are being used to investigate the mechanisms behind their pathogenesis and to identify proteins associated with them. However, computational approaches have not been utilized extensively in the study of BLADs. This study aims to investigate the interaction network of proteins associated with BLADs (BLAD interactome) and to identify novel associations with other human proteins. The method followed in this study combines information regarding protein-protein interaction network properties and autoimmune disease terms. Proteins with high network scores and statistically significant autoimmune disease term enrichment were obtained and 14 of them were designated as candidate proteins associated with BLADs. Additionally, clustering analysis of the BLAD interactome was used and allowed the detection of 17 proteins that act as "connectors" of different BLADs. We expect our findings to further extend experimental efforts for the investigation of the pathogenesis and the relationships of BLADs.


Specific in vitro binding of a new (99m)Tc-radiolabeled derivative of the C-terminal decapeptide of prothymosin alpha on human neutrophils.

  • Chrysoula-Evangelia Karachaliou‎ et al.
  • International journal of pharmaceutics‎
  • 2015‎

Prothymosin alpha (ProTα) is a conserved mammalian polypeptide with intracellular functions associated with cell proliferation and apoptosis and an extracellular role associated with immunopotentiation. The N-terminal fragment [1-28], which is identical with the immunostimulating peptide thymosin α1 (Tα1), was earlier considered as the immunoactive region of the polypeptide; however, recent data suggest that ProTα may exert a discrete immunomodulating action through its central or C-terminal region, via targeting Toll-like receptor- 4 (TLR4). In this work, a derivative of the C-terminal fragment ProTα[100-109] (ProTα-D1) that can be radiolabeled with (99m)Tc was developed. The biological activity of the non-radioactive (185/187)rhenium-complex of this derivative ([(185/187)Re]ProTα-D1, structurally similar with [(99m)Tc]ProTα-D1) was verified through suitable in vitro bioassays on human neutrophils. Subsequent cell-binding studies revealed specific, time-dependent and saturable binding of [(99m)Tc]ProTα-D1 on neutrophils, which was inhibited by intact ProTα and ProTα[100-109], as well as by a "prototype" TLR4-ligand (lipopolysaccharide from Escherichia coli). Overall, our results support the existence of ProTα-binding sites on human neutrophils, recognizing [(99m)Tc]ProTα-D1, which might involve TLR4. [(99m)Tc]ProTα-D1 may be a useful tool for conducting further in vitro and in vivo studies, aiming to elucidate the extracellular mode of action of ProTα and, eventually, develop ProTα-based immunotherapeutics.


Prothymosin α and a prothymosin α-derived peptide enhance T(H)1-type immune responses against defined HER-2/neu epitopes.

  • Kyriaki Ioannou‎ et al.
  • BMC immunology‎
  • 2013‎

Active cancer immunotherapies are beginning to yield clinical benefit, especially those using peptide-pulsed dendritic cells (DCs). Different adjuvants, including Toll-like receptor (TLR) agonists, commonly co-administered to cancer patients as part of a DC-based vaccine, are being widely tested in the clinical setting. However, endogenous DCs in tumor-bearing individuals are often dysfunctional, suggesting that ex vivo educated DCs might be superior inducers of anti-tumor immune responses. We have previously shown that prothymosin alpha (proTα) and its immunoreactive decapeptide proTα(100-109) induce the maturation of human DCs in vitro. The aim of this study was to investigate whether proTα- or proTα(100-109)-matured DCs are functionally competent and to provide preliminary evidence for the mode of action of these agents.


Development of an ELISA for the quantification of the C-terminal decapeptide prothymosin α(100-109) in sera of mice infected with bacteria.

  • Pinelopi Samara‎ et al.
  • Journal of immunological methods‎
  • 2013‎

Apoptosis is characterized by a series of discrete biochemical events, among which is the truncation of the nuclear polypeptide prothymosin alpha (proTα) by activated caspase-3. This early apoptotic event results in the generation of a carboxy-terminal fragment of proTα, the immunoactive decapeptide proTα(100-109). We hypothesized that the detection of increased levels of proTα(100-109) in serum can be directly correlated with the induction of massive cell apoptosis, resulting from a severe bacterial infection. Thus, using high-affinity-purified polyclonal antibodies (Abs), raised in rabbits and a prototype antibody-capture system, we developed a highly sensitive and specific competitive ELISA for proTα(100-109). The sensitivity of the ELISA (0.1ng/mL to 10μg/mL) is acceptable for the quantification of the decapeptide in serum samples. To assess our initial hypothesis, we determined the concentration of proTα(100-109) in the sera of mice infected with the bacterium Streptococcus pyogenes over the course of the infection. We show that serum concentration of proTα(100-109) was marginal to undetectable before infection, increased over time and peaked at 72h postinfection. In silico analysis suggests that the Abs generated are unlikely to cross-react with any other unrelated mouse or bacterial protein. Further validation of our ELISA using serum samples from humans, infected with bacteria, may provide a useful tool to differentiate the causative agent of a potentially lethal septic infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: