Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Detailed morphological analysis of rat hippocampi treated with CSF autoantibodies from patients with anti-NMDAR encephalitis discloses two distinct types of immunostaining patterns.

  • Franziska Wagner‎ et al.
  • Brain research‎
  • 2020‎

Anti-NMDA receptor encephalitis was first described about thirteen years ago and has become one of the most important differential diagnoses for new-onset psychosis. The disease is mediated by autoantibodies against the subunit 1 of the N-methyl-D-aspartate receptor (NMDA-R1) in patients presenting with variable clinical symptoms. Patients often profit from immunmodulatory therapy, independent of their individual symptoms. In this study CSF samples as well as monoclonal antibodies derived from patients diagnosed with NMDA-R1 encephalitis were applied to rat hippocampus and visualized by immunocytochemistry. This reveals at least two distinct patterns of immunoreactivity. Antibodies from "pattern group 1" display the familiar pattern of NMDA-R1 distribution in the hippocampus reported in experiments with rabbit anti-NMDA-R1 antibodies. Neurons and primary dendrites in the CA1 and CA3 region show strongly stained cell bodies, in line with the predominant postsynaptic localization of the NMDA receptor in the brain. However, autoantibodies from "pattern group 2" show an inverse pattern, with no staining of the cell bodies and primary dendrites in CA1 and CA3 regions. Electron microscopic experiments disclose that autoantibodies of "pattern group 1 patients" bind to postsynaptic NMDA receptors, while those of "pattern group 2 patients" target presynaptic NMDA receptors. We describe one NMDA-receptor antibody giving staining comparable to rabbit anti-NMDA-R1 antibodies, raised against the C-terminus. In the highly heterogenous disease anti-NMDA-receptor 1 encephalitis we found evidence for at least two different subtypes. It will be very interesting to determine whether there also are two distinct clinical phenotypes.


Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo.

  • Orsolya Kiraly‎ et al.
  • PLoS genetics‎
  • 2015‎

Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence.


Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.

  • Michelle R Sukup-Jackson‎ et al.
  • PLoS genetics‎
  • 2014‎

Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.


No direct effect of the -521 C/T polymorphism in the human dopamine D4 receptor gene promoter on transcriptional activity.

  • Eva Kereszturi‎ et al.
  • BMC molecular biology‎
  • 2006‎

The human dopamine D4 receptor (DRD4) gene has been studied extensively as a candidate gene for certain psychological traits and several behavioural and psychiatric disorders. Both the 5' regulatory region and the coding sequence contain a number of polymorphisms. The promoter variants have received particular attention in the past few years due to their possible role in the regulation of gene transcription. Previously, the -521C/T SNP was shown to influence promoter activity. The aim of this study is to perform an in-depth analysis of this effect in the context of various neural cell lines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: