Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Bump-and-hole engineering of human polypeptide N-acetylgalactosamine transferases to dissect their protein substrates and glycosylation sites in cells.

  • Beatriz Calle‎ et al.
  • STAR protocols‎
  • 2023‎

Despite the known disease relevance of glycans, the biological function and substrate specificities of individual glycosyltransferases are often ill-defined. Here, we describe a protocol to develop chemical, bioorthogonal reporters for the activity of the GalNAc-T family of glycosyltransferases using a tactic termed bump-and-hole engineering. This allows identification of the protein substrates and glycosylation sites of single GalNAc-Ts. Despite requiring transfection of cells with the engineered transferases and enzymes for biosynthesis of bioorthogonal substrates, the tactic complements methods in molecular biology. For complete details on the use and execution of this protocol, please refer to Schumann et al. (2020)1, Cioce et al. (2021)2, and Cioce et al. (2022)3.


Benefits of Chemical Sugar Modifications Introduced by Click Chemistry for Glycoproteomic Analyses.

  • Beatriz Calle‎ et al.
  • Journal of the American Society for Mass Spectrometry‎
  • 2021‎

Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.


Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation.

  • Marjoke F Debets‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.


Cell-specific bioorthogonal tagging of glycoproteins.

  • Anna Cioce‎ et al.
  • Nature communications‎
  • 2022‎

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: