Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Detection of Sindbis and Inkoo Virus RNA in Genetically Typed Mosquito Larvae Sampled in Northern Sweden.

  • Olov Tingström‎ et al.
  • Vector borne and zoonotic diseases (Larchmont, N.Y.)‎
  • 2016‎

Mosquito-borne viruses have a widespread distribution across the globe and are known to pose serious threats to human and animal health. The maintenance and dissemination of these viruses in nature are driven through horizontal and vertical transmission. In the temperate climate of northern Sweden, there is a dearth of knowledge on whether mosquito-borne viruses that occur are transmitted transovarially. To gain a better understanding of mosquito-borne virus circulation and maintenance, mosquito larvae were sampled in northern Sweden during the first and second year after a large outbreak of Ockelbo disease in 2013 caused by Sindbis virus (SINV).


Prevalence of Orthohantavirus-Reactive Antibodies in Humans and Peri-Domestic Rodents in Northern Ethiopia.

  • Yonas Meheretu‎ et al.
  • Viruses‎
  • 2021‎

In 2012, Tigray orthohantavirus was discovered in Ethiopia, but its seasonal infection in small mammals, and whether it poses a risk to humans was unknown. The occurrence of small mammals, rodents and shrews, in human inhabitations in northern Ethiopia is affected by season and presence of stone bunds. We sampled small mammals in two seasons from low- and high-density stone bund fields adjacent to houses and community-protected semi-natural habitats in Atsbi and Hagere Selam, where Tigray orthohantavirus was first discovered. We collected blood samples from both small mammals and residents using filter paper. The presence of orthohantavirus-reactive antibodies in blood was then analyzed using immunofluorescence assay (human samples) and enzyme linked immunosorbent assays (small mammal samples) with Puumala orthohantavirus as antigen. Viral RNA was detected by RT-PCR using small mammal blood samples. Total orthohantavirus prevalence (antibodies or virus RNA) in the small mammals was 3.37%. The positive animals were three Stenocephalemys albipes rats (prevalence in this species = 13.04%). The low prevalence made it impossible to determine whether season and stone bunds were associated with orthohantavirus prevalence in the small mammals. In humans, we report the first detection of orthohantavirus-reactive IgG antibodies in Ethiopia (seroprevalence = 5.26%). S. albipes lives in close proximity to humans, likely increasing the risk of zoonotic transmission.


Experimental Infection and Transmission Competence of Sindbis Virus in Culex torrentium and Culex pipiens Mosquitoes from Northern Sweden.

  • Olivia Wesula Lwande‎ et al.
  • Vector borne and zoonotic diseases (Larchmont, N.Y.)‎
  • 2019‎

Sindbis virus (SINV) is a mosquito-borne Alphavirus known to infect birds and cause intermittent outbreaks among humans in Fenno-Scandia. In Sweden, the endemic area has mainly been in central Sweden. Recently, SINV infections have emerged to northern Sweden, but the vectorial efficiency for SINV of mosquito species in this northern region has not yet been ascertained.


Quantification and kinetics of viral RNA transcripts produced in Orthohantavirus infected cells.

  • Julia Wigren Byström‎ et al.
  • Virology journal‎
  • 2018‎

Rodent borne viruses of the Orthohantavirus genus cause hemorrhagic fever with renal syndrome among people in Eurasia, and hantavirus cardiopulmonary syndrome in the Americas. At present, there are no specific treatments or efficient vaccines against these diseases. Improved understanding of viral transcription and replication may instigate targeted treatment of Orthohantavirus infections. For this purpose, we investigated the kinetics and levels of viral RNA transcription during an ongoing infection in-vitro.


Seroprevalence and Risk Factors of Inkoo Virus in Northern Sweden.

  • Magnus Evander‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2016‎

The mosquito-borne Inkoo virus (INKV) is a member of the California serogroup in the family Bunyaviridae, genus Orthobunyavirus These viruses are associated with fever and encephalitis, although INKV infections are not usually reported and the incidence is largely unknown. The aim of the study was to determine the prevalence of anti-INKV antibodies and associated risk factors in humans living in northern Sweden. Seroprevalence was investigated using the World Health Organization Monitoring of Trends and Determinants in Cardiovascular Disease study, where a randomly selected population aged between 25 and 74 years (N = 1,607) was invited to participate. The presence of anti-INKV IgG antibodies was determined by immunofluorescence assay. Seropositivity for anti-INKV was significantly higher in men (46.9%) than in women (34.8%; P < 0.001). In women, but not in men, the prevalence increased somewhat with age (P = 0.06). The peak in seropositivity was 45-54 years for men and 55-64 years for women. Living in rural areas was associated with a higher seroprevalence. In conclusion, the prevalence of anti-INKV antibodies was high in northern Sweden and was associated with male sex, older age, and rural living. The age distribution indicates exposure to INKV at a relatively early age. These findings will be important for future epidemiological and clinical investigations of this relatively unknown mosquito-borne virus.


Mosquito-borne Inkoo virus in northern Sweden - isolation and whole genome sequencing.

  • Olivia Wesula Lwande‎ et al.
  • Virology journal‎
  • 2017‎

Inkoo virus (INKV) is a less known mosquito-borne virus belonging to Bunyaviridae, genus Orthobunyavirus, California serogroup. Studies indicate that INKV infection is mainly asymptomatic, but can cause mild encephalitis in humans. In northern Europe, the sero-prevalence against INKV is high, 41% in Sweden and 51% in Finland. Previously, INKV RNA has been detected in adult Aedes (Ae.) communis, Ae. hexodontus and Ae. punctor mosquitoes and Ae. communis larvae, but there are still gaps of knowledge regarding mosquito vectors and genetic diversity. Therefore, we aimed to determine the occurrence of INKV in its mosquito vector and characterize the isolates.


Seewis hantavirus in common shrew (Sorex araneus) in Sweden.

  • Olivia Wesula Lwande‎ et al.
  • Virology journal‎
  • 2020‎

Rodent borne hantaviruses are emerging viruses infecting humans through inhalation. They cause hemorrhagic fever with renal syndrome and hemorrhagic cardiopulmonary syndrome. Recently, hantaviruses have been detected in other small mammals such as Soricomorpha (shrews, moles) and Chiroptera (bats), suggested as reservoirs for potential pandemic viruses and to play a role in the evolution of hantaviruses. It is important to study the global virome in different reservoirs, therefore our aim was to investigate whether shrews in Sweden carried any hantaviruses. Moreover, to accurately determine the host species, we developed a molecular method for identification of shrews.


Novel strains of Culex flavivirus and Hubei chryso-like virus 1 from the Anopheles mosquito in western Kenya.

  • Olivia Wesula Lwande‎ et al.
  • Virus research‎
  • 2024‎

Surveillance of mosquito vectors is critical for early detection, prevention and control of vector borne diseases. In this study we used advanced molecular tools, such as DNA barcoding in combination with novel sequencing technologies to discover new and already known viruses in genetically identified mosquito species. Mosquitoes were captured using BG sentinel traps in Western Kenya during May and July 2019, and homogenized individually before pooled into groups of ten mosquitoes. The pools and individual samples were then used for molecular analysis and to infect cell cultures. Of a total of fifty-four (54) 10-pools, thirteen (13) showed cytopathic effect (CPE) on VeroB4 cells, eighteen (18) showed CPE on C6/36 cells. Eight (8) 10-pools out of the 31 CPE positive pools showed CPE on both VeroB4 and C6/36 cells. When using reverse transcriptase polymerase chain reaction (RT-PCR), Sanger sequencing and Twist Comprehensive Viral Research Panel (CVRP) (Twist Biosciences), all pools were found negative by RT-PCR when using genus specific primers targeting alphaviruses, orthobunyaviruses and virus specific primers towards o'nyong-nyong virus, chikungunya virus and Sindbis virus (previously reported to circulate in the region). Interestingly, five pools were RT-PCR positive for flavivirus. Two of the RT-PCR positive pools showed CPE on both VeroB4 and C6/36 cells, two pools showed CPE on C6/36 cells alone and one pool on VeroB4 cells only. Fifty individual mosquito homogenates from the five RT-PCR positive 10-pools were analyzed further for flavivirus RNA. Of these, 19 out of the 50 individual mosquito homogenates indicated the presence of flavivirus RNA. Barcoding of the flavivirus positive mosquitoes revealed the mosquito species as Aedes aegypti (1), Mansonia uniformis (6), Anopheles spp (3), Culex pipiens (5), Culex spp (1), Coquilletidia metallica (2) and Culex quinquefasciatus (1). Of the 19 flavivirus positive individual mosquitoes, five (5) virus positive homogenates were sequenced. Genome sequences of two viruses were completed. One was identified as the single-stranded RNA Culex flavivirus and the other as the double-stranded RNA Hubei chryso-like virus 1. Both viruses were found in the same Anopheles spp. homogenate extracted from a sample that showed CPE on both VeroB4 and C6/36 cells. The detection of both viruses in a single mosquito homogenate indicated coinfection. Phylogenetic analyses suggested that the Culex flavivirus sequence detected was closely related to a Culex flavivirus isolated from Uganda in 2008. All four Hubei chryso-like virus 1 segments clusters closely to Hubei chryso-like virus 1 strains isolated in Australia, China and USA. Two novel strains of insect-specific viruses in Anopheles mosquitoes were detected and characterized.


Vector competence of Anopheles stephensi for O'nyong-nyong virus: a risk for global virus spread.

  • Maud Mutsaers‎ et al.
  • Parasites & vectors‎
  • 2023‎

O'nyong-nyong virus (ONNV) is a mosquito-borne alphavirus causing sporadic outbreaks of febrile illness with rash and polyarthralgia. Up to now, ONNV has been restricted to Africa and only two competent vectors have been found, Anopheles gambiae and An. funestus, which are also known malaria vectors. With globalization and invasive mosquito species migrating to ONNV endemic areas, there is a possible risk of introduction of the virus to other countries and continents. Anopheles stephensi, is closely related to An. gambiae and one of the invasive mosquito species of Asian origin that is now present in the Horn of Africa and spreading further east. We hypothesize that An. stephensi, a known primary urban malaria vector, may also serve as a new possible vector for ONNV.


Whole genome phylogenetic investigation of a West Nile virus strain isolated from a tick sampled from livestock in north eastern Kenya.

  • Olivia Wesula Lwande‎ et al.
  • Parasites & vectors‎
  • 2014‎

West Nile virus (WNV) has a wide geographical distribution and has been associated to cause neurological disease in humans and horses. Mosquitoes are the traditional vectors for WNV; however, the virus has also been isolated from tick species in North Africa and Europe which could be a means of introduction and spread of the virus over long distances through migratory birds. Although WNV has been isolated in mosquitoes in Kenya, paucity of genetic and pathogenicity data exists. We previously reported the isolation of WNV from ticks collected from livestock and wildlife in Ijara District of Kenya, a hotspot for arbovirus activity. Here we report the full genome sequence and phylogenetic investigation of their origin and relation to strains from other regions.


Distribution and abundance of key vectors of Rift Valley fever and other arboviruses in two ecologically distinct counties in Kenya.

  • Rosemary Sang‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis of ruminants and humans that causes outbreaks in Africa and the Arabian Peninsula with significant public health and economic consequences. Humans become infected through mosquito bites and contact with infected livestock. The virus is maintained between outbreaks through vertically infected eggs of the primary vectors of Aedes species which emerge following rains with extensive flooding. Infected female mosquitoes initiate transmission among nearby animals, which amplifies virus, thereby infecting more mosquitoes and moving the virus beyond the initial point of emergence. With each successive outbreak, RVF has been found to expand its geographic distribution to new areas, possibly driven by available vectors. The aim of the present study was to determine if RVF virus (RVFV) transmission risk in two different ecological zones in Kenya could be assessed by looking at the species composition, abundance and distribution of key primary and secondary vector species and the level of virus activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: