Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

APOε2 and education in cognitively normal older subjects with high levels of AD pathology at autopsy: findings from the Nun Study.

  • Diego Iacono‎ et al.
  • Oncotarget‎
  • 2015‎

Asymptomatic Alzheimer's disease (ASYMAD) subjects are individuals characterized by preserved cognition before death despite substantial AD pathology at autopsy. ASYMAD subjects show comparable levels of AD pathology, i.e. β-amyloid neuritic plaques (Aβ-NP) and tau-neurofibrillary tangles (NFT), to those observed in mild cognitive impairment (MCI) and some definite AD cases. Previous clinicopathologic studies on ASYMAD subjects have shown specific phenomena of hypertrophy in the cell bodies, nuclei, and nucleoli of hippocampal pyramidal neurons and other cerebral areas. Since it is well established that the allele APOε4 is a major genetic risk factor for AD, we examined whether specific alleles of APOE could be associated with the different clinical outcomes between ASYMAD and MCI subjects despite equivalent AD pathology. A total of 523 brains from the Nun Study were screened for this investigation. The results showed higher APOε2 frequency (p < 0.001) in ASYMAD (19.2%) vs. MCI (0%) and vs. AD (4.7%). Furthermore, higher education in ASYMAD vs. MCI and AD (p < 0.05) was found. These novel autopsy-verified findings support the hypothesis of the beneficial effect of APOε2 and education, both which seem to act as contributing factors in delaying or forestalling the clinical manifestations of AD despite consistent levels of AD pathology.


Hippocampal sclerosis dementia with the C9ORF72 hexanucleotide repeat expansion.

  • Olga Pletnikova‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are the main syndromes of the chromosome 9 ORF72 (C9ORF72) hexanucleotide repeat expansion, but studies have shown a substantial phenotypic diversity that includes psychiatric presentations. This study describes hippocampal sclerosis dementia (HSD) in carriers of the C9ORF72 mutation. We compared clinical and neuropathological features of HSD in carriers and noncarriers autopsied at Johns Hopkins. Carriers presented with amnesia, agitation, dissocial behavior, and impaired self-care, whereas noncarriers showed little agitation. The groups were not dissimilar in cognitive or motor dysfunction. Neuropathological examination of carriers showed cerebellar neuronal inclusions positive for ubiquitin, p62, and ubiquilin-2, and negative for TAR DNA-binding protein 43. Noncarriers did not have cerebellar inclusions. C9ORF72 repeat-associated non-ATG translation was confirmed by immunohistochemistry. These observations broaden the C9ORF72 phenotype and place HSD in the FTD spectrum. The amnesic phenotype of HSD, which is consistent with the focal hippocampal atrophy, should be included in clinical categorizations of FTD.


Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity.

  • Seulah Choi‎ et al.
  • PloS one‎
  • 2015‎

Glucocerebrosidase (GCase) functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher's disease (GD), Parkinson's disease (PD), and Dementia with Lewy Bodies (DLB). However, there is little information about the role of GCase in the pathogenesis of Alzheimer's disease (AD). Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1-42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1-42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1-42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD.


Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: a case study at 11.7 T.

  • Manisha Aggarwal‎ et al.
  • NeuroImage‎
  • 2013‎

A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125-255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7 T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong gray-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of gray matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications.


A comprehensive screening of copy number variability in dementia with Lewy bodies.

  • Celia Kun-Rodrigues‎ et al.
  • Neurobiology of aging‎
  • 2019‎

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study.

  • Stuart G Snowden‎ et al.
  • PLoS medicine‎
  • 2017‎

The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain.


Discovery of several thousand highly diverse circular DNA viruses.

  • Michael J Tisza‎ et al.
  • eLife‎
  • 2020‎

Although millions of distinct virus species likely exist, only approximately 9000 are catalogued in GenBank's RefSeq database. We selectively enriched for the genomes of circular DNA viruses in over 70 animal samples, ranging from nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2500 complete genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these 'dark matter' sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere.


A brain proteomic signature of incipient Alzheimer's disease in young APOE ε4 carriers identifies novel drug targets.

  • Jackson A Roberts‎ et al.
  • Science advances‎
  • 2021‎

Aptamer-based proteomics revealed differentially abundant proteins in Alzheimer’s disease (AD) brains in the Baltimore Longitudinal Study of Aging and Religious Orders Study (mean age, 89 ± 9 years). A subset of these proteins was also differentially abundant in the brains of young APOE ε4 carriers relative to noncarriers (mean age, 39 ± 6 years). Several of these proteins represent targets of approved and experimental drugs for other indications and were validated using orthogonal methods in independent human brain tissue samples as well as in transgenic AD models. Using cell culture–based phenotypic assays, we showed that drugs targeting the cytokine transducer STAT3 and the Src family tyrosine kinases, YES1 and FYN, rescued molecular phenotypes relevant to AD pathogenesis. Our findings may accelerate the development of effective interventions targeting the earliest molecular triggers of AD.


Abnormal brain cholesterol homeostasis in Alzheimer's disease-a targeted metabolomic and transcriptomic study.

  • Vijay R Varma‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2021‎

The role of brain cholesterol metabolism in Alzheimer's disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson's disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease.

  • Nikhil Panicker‎ et al.
  • Neuron‎
  • 2022‎

Parkinson's disease (PD) is mediated, in part, by intraneuronal accumulation of α-synuclein aggregates andsubsequent death of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). Microglial hyperactivation of the NOD-like receptor protein 3 (NLRP3) inflammasome has been well-documented in various neurodegenerative diseases, including PD. We show here that loss of parkin activity in mouse and human DA neurons results in spontaneous neuronal NLRP3 inflammasome assembly, leading to DA neuron death. Parkin normally inhibits inflammasome priming by ubiquitinating and targeting NLRP3 for proteasomal degradation. Loss of parkin activity also contributes to the assembly of an active NLRP3 inflammasome complex via mitochondrial-derived reactive oxygen species (mitoROS) generation through the accumulation of another parkin ubiquitination substrate, ZNF746/PARIS. Inhibition of neuronal NLRP3 inflammasome assembly prevents degeneration of DA neurons in familial and sporadic PD models. Strategies aimed at limiting neuronal NLRP3 inflammasome activation hold promise as a disease-modifying therapy for PD.


Mass Spectrometry-Based Proteomics Analysis of Human Substantia Nigra From Parkinson's Disease Patients Identifies Multiple Pathways Potentially Involved in the Disease.

  • Yura Jang‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2023‎

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient's brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag-based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein-protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.


Mass spectrometry-based proteomics analysis of human globus pallidus from progressive supranuclear palsy patients discovers multiple disease pathways.

  • Yura Jang‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

Progressive supranuclear palsy (PSP) is a neurodegenerative disorder clinically characterized by progressive postural instability, supranuclear gaze palsy, parkinsonism, and cognitive decline caused by degeneration in specific areas of the brain including globus pallidus (GP), substantia nigra, and subthalamic nucleus. However, the pathogenetic mechanism of PSP remains unclear to date.Unbiased global proteome analysis of patients' brain samples is an important step toward understanding PSP pathogenesis, as proteins serve as workhorses and building blocks of the cell.


Loss of Astrocytic µ Opioid Receptors Exacerbates Aversion Associated with Morphine Withdrawal in Mice: Role of Mitochondrial Respiration.

  • Kateryna Murlanova‎ et al.
  • Cells‎
  • 2023‎

Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal.


Neurexin 3 transmembrane and soluble isoform expression and splicing haplotype are associated with neuron inflammasome and Alzheimer's disease.

  • Akitoyo Hishimoto‎ et al.
  • Alzheimer's research & therapy‎
  • 2019‎

Synaptic damage precedes neuron death in Alzheimer's disease (AD). Neurexins, NRXN1, NRXN2, and NRXN3, are presynaptic adhesion molecules that specify neuron synapses and regulate neurotransmitter release. Neurexins and postsynaptic neuroligins interact with amyloid beta oligomer (AβO) deposits in damaged synapses. NRXN3 gene variants have been associated with autism, addiction, and schizophrenia, however, not fully investigated in Alzheimer's disease. In the present study, we investigated an AD association of a 3'-splicing allele of rs8019381 that produces altered expression of transmembrane or soluble NRXN3 isoforms.


Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1.

  • Frederick C Nucifora‎ et al.
  • Nature communications‎
  • 2016‎

A common genetic form of Parkinson's disease (PD) is caused by mutations in LRRK2. We identify WSB1 as a LRRK2 interacting protein. WSB1 ubiquitinates LRRK2 through K27 and K29 linkage chains, leading to LRRK2 aggregation and neuronal protection in primary neurons and a Drosophila model of G2019S LRRK2. Knocking down endogenous WSB1 exacerbates mutant LRRK2 neuronal toxicity in neurons and the Drosophila model, indicating a role for endogenous WSB1 in modulating LRRK2 cell toxicity. WSB1 is in Lewy bodies in human PD post-mortem tissue. These data demonstrate a role for WSB1 in mutant LRRK2 pathogenesis, and suggest involvement in Lewy body pathology in sporadic PD. Our data indicate a role in PD for ubiquitin K27 and K29 linkages, and suggest that ubiquitination may be a signal for aggregation and neuronal protection in PD, which may be relevant for other neurodegenerative disorders. Finally, our study identifies a novel therapeutic target for PD.


Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini.

  • Chan Hyun Na‎ et al.
  • Genome research‎
  • 2018‎

Translation initiation generally occurs at AUG codons in eukaryotes, although it has been shown that non-AUG or noncanonical translation initiation can also occur. However, the evidence for noncanonical translation initiation sites (TISs) is largely indirect and based on ribosome profiling (Ribo-seq) studies. Here, using a strategy specifically designed to enrich N termini of proteins, we demonstrate that many human proteins are translated at noncanonical TISs. The large majority of TISs that mapped to 5' untranslated regions were noncanonical and led to N-terminal extension of annotated proteins or translation of upstream small open reading frames (uORF). It has been controversial whether the amino acid corresponding to the start codon is incorporated at the TIS or methionine is still incorporated. We found that methionine was incorporated at almost all noncanonical TISs identified in this study. Comparison of the TISs determined through mass spectrometry with ribosome profiling data revealed that about two-thirds of the novel annotations were indeed supported by the available ribosome profiling data. Sequence conservation across species and a higher abundance of noncanonical TISs than canonical ones in some cases suggests that the noncanonical TISs can have biological functions. Overall, this study provides evidence of protein translation initiation at noncanonical TISs and argues that further studies are required for elucidation of functional implications of such noncanonical translation initiation.


Estrogen receptor activation contributes to RNF146 expression and neuroprotection in Parkinson's disease models.

  • Hyojung Kim‎ et al.
  • Oncotarget‎
  • 2017‎

RNF146 is an E3 ubiquitin ligase that specifically recognizes and polyubiquitinates poly (ADP-ribose) (PAR)-conjugated substrates for proteasomal degradation. RNF146 has been shown to be neuroprotective against PAR polymerase-1 (PARP1)-induced cell death during stroke. Here we report that RNF146 expression and RNF146 inducers can prevent cell death elicited by Parkinson's disease (PD)-associated and PARP1-activating stimuli. In SH-SY5Y cells, RNF146 expression conferred resistance to toxic stimuli that lead to PARP1 activation. High-throughput screen using a luciferase construct harboring the RNF146 promoter identified liquiritigenin as an RNF146 inducer. We found that RNF146 expression by liquiritigenin was mediated by estrogen receptor activation and contributed to cytoprotective effect of liquiritigenin. Finally, RNF146 expression by liquiritigenin in mouse brains provided dopaminergic neuroprotection in a 6-hydroxydopamine PD mouse model. Given the presence of PARP1 activity and RNF146 deficits in PD, it could be a potential therapeutic strategy to restore RNF146 expression by natural compounds or estrogen receptor activation.


Bile acid synthesis, modulation, and dementia: A metabolomic, transcriptomic, and pharmacoepidemiologic study.

  • Vijay R Varma‎ et al.
  • PLoS medicine‎
  • 2021‎

While Alzheimer disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association are unclear. We tested whether dysregulation of cholesterol catabolism, through its conversion to primary bile acids (BAs), was associated with dementia pathogenesis.


Towards a human brain EV atlas: Characteristics of EVs from different brain regions, including small RNA and protein profiles.

  • Yiyao Huang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 for all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are merited to lend more insight into the links between EV heterogeneity and function in the CNS.


Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer's Disease.

  • Genevieve L Stein-O'Brien‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: