Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice.

  • O F Bueno‎ et al.
  • The EMBO journal‎
  • 2000‎

Members of the mitogen-activated protein kinase (MAPK) cascade such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 are implicated as important regulators of cardiomyocyte hypertrophic growth in culture. However, the role that individual MAPK pathways play in vivo has not been extensively evaluated. Here we generated nine transgenic mouse lines with cardiac-restricted expression of an activated MEK1 cDNA in the heart. MEK1 transgenic mice demonstrated concentric hypertrophy without signs of cardiomyopathy or lethality up to 12 months of age. MEK1 transgenic mice showed a dramatic increase in cardiac function, as measured by echocardiography and isolated working heart preparation, without signs of decompensation over time. MEK1 transgenic mice and MEK1 adenovirus-infected neonatal cardiomyocytes each demonstrated ERK1/2, but not p38 or JNK, activation. MEK1 transgenic mice and MEK1 adenovirus-infected cultured cardiomyocytes were also partially resistant to apoptotic stimuli. The results of the present study indicate that the MEK1-ERK1/2 signaling pathway stimulates a physiologic hypertrophy response associated with augmented cardiac function and partial resistance to apoptotsis.


Colchicine inhibits GABA(A) receptors independently of microtubule depolymerization.

  • O F Bueno‎ et al.
  • Neuropharmacology‎
  • 1998‎

Colchicine is a microtubule depolymerizing agent used extensively in the study of cytoskeleton-dependent cell functions. In studying the possible functional interaction between the GABA(A) receptor and the cytoskeleton, we found that colchicine inhibits GABA(A) receptor function by mechanisms independent of microtubule depolymerization. Human GABA(A) receptor alpha1beta2gamma2L subunits were co-expressed in Xenopus oocytes and the effects of colchicine on GABA(A) receptor function was assessed using the two-electrode voltage-clamp technique. Co-application of GABA (10 microM) with colchicine (100 microM) resulted in a 59.9% inhibition of GABA-gated chloride currents. This effect was instantaneous in onset with no pre-incubation required and reversed within seconds. Other depolymerizing agents, such as nocodazole (20 microM) and vinblastine (200 microM), did not affect GABA(A) receptor function using the same co-application protocol used with colchicine. The polymerizing agent taxol (10-50 microM) did not affect colchicine inhibition of the GABA responses and did not itself alter GABA-gated chloride currents. The inhibitory effect of colchicine was present under conditions in which the oocyte microtubules had been depolymerized by cold temperature. These results indicate that colchicine inhibits the GABA(A) receptor via mechanisms unrelated to microtubule depolymerization. To further examine the inhibitory effect of colchicine on the GABA response, GABA (10-3000 microM) concentration-response curves were performed in the absence or presence of various concentrations of colchicine (30-300 microM). In the presence of colchicine, the GABA concentration-response curve was shifted to the right in a parallel fashion. A Schild plot of this data yielded a linear slope indicating that colchicine acts as a competitive antagonist at the GABA binding site. We conclude that colchicine is a competitive antagonist at the GABA(A) receptor and that studies using colchicine to examine the functional interaction between GABA(A) receptors and microtubules should be interpreted with caution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: