Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Endothelin converting enzyme-1 (ECE-1) deletion in association with Endothelin-1 downregulation ameliorates kidney fibrosis in mice.

  • Nur Arfian‎ et al.
  • Life sciences‎
  • 2020‎

Kidney fibrosis is a common final pathway of chronic kidney diseases, which are characterized by renal architecture damage, inflammation, fibroblast expansion and myofibroblast formation. Endothelin converting enzyme-1 (ECE-1) contributes to activation of Endothelin-1 (ET-1), a potent vasoconstrictor and pro-fibrotic substance. This study elucidated the effect of ECE-1 knockout in kidney fibrosis model in mice in association of ET-1 downregulation. Kidney fibrosis was performed in ECE-1 knockout (ECE-1 KO) and vascular endothelial derived ET-1 KO (VEETKO) mice (2 months, 20-30 g, n = 30) and their wild type (WT) littermates using unilateral ureteral obstruction (UUO) procedure. Mice were euthanized on day-7 and day-14 after UUO. Histopathological analysis was conducted for fibrosis and tubular injury. Immunostainings were done to quantify macrophages (F4/80), fibroblasts (FSP-1) and myofibroblasts (α-SMA). Monocyte Chemoattractant Protein-1 (MCP-1), ECE-1 and preproET-1 (ppET-1) mRNA expression were quantified with qRT-PCR, while Transforming Growth Factor-β1 (TGF-β1) and α-SMA protein level were quantified with Western blot. ECE-1 KO mice demonstrated reduction of ECE-1 and ppET-1 mRNA expression, attenuation of kidney fibrosis, tubular injury, MCP-1 mRNA expression and macrophage number compared to WT. Double immunostaining revealed fibroblast to myofibroblast formation after UUO, while ECE-1 KO mice had significantly lower fibroblast number and myofibroblast formation compared to WT, which were associated with significantly lower TGF-β1 and α-SMA protein levels in day-14 of UUO. VEETKO mice also demonstrated attenuation of ET-1 protein level, fibrosis and myofibroblast formation. In conclusion, ECE-1 knockout and ET-1 downregulation attenuated kidney fibrosis.


Endothelial senescence alleviates cognitive impairment in a mouse model of Alzheimer's disease.

  • Sayo Horibe‎ et al.
  • Glia‎
  • 2024‎

Alzheimer's disease (AD) is among the most prevalent age-related neurodegenerative diseases. Endothelial cell (EC) senescence was discovered in the AD brain, but its function in AD pathogenesis was unidentified. Here we created an AD mouse model with EC senescence (APP/PS1;TERF2DN mice) by intercrossing APP/PS1 mice with Tie2 promoter-driven dominant negative telomeric repeat-binding factor 2 transgenic mice (TERF2DN-Tg mice). We evaluated cognitive functions and AD brain pathology in APP/PS1;TERF2DN mice. Surprisingly, compared with the control APP/PS1 mice, APP/PS1;TERF2DN mice demonstrated the attenuation of cognitive impairment and amyloid-β (Aβ) pathology, accompanied by the compaction of Aβ plaques with increased microglial coverage and reduced neurite dystrophy. Moreover, we evaluated whether EC senescence could affect microglial morphology and phagocytosis of Aβ. Compared with wild-type mice, microglia in TERF2DN-Tg mice display increased numbers of endpoints (a morphometric parameter to quantify the number of processes) and Aβ phagocytosis and related gene expression. Single-cell RNA-sequencing analysis showed that compared with APP/PS1 mouse microglia, APP/PS1;TERF2DN mouse microglia displayed a modest decline in disease-associated microglia, accompanied by an altered direction of biological process branching from antigen synthesis and arrangement to ribonucleoprotein complex biogenesis. Our outcomes indicate that EC senescence alters microglia toward a protective phenotype with a rise in phagocytic and barrier roles, and may offer a clue to create a novel preventive/therapeutic method to treat AD.


Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction.

  • Kotaro Shimizu‎ et al.
  • Nature communications‎
  • 2023‎

Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin βA. We demonstrate that activin A, a homodimer of inhibin βA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin βA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.


Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

  • Yoshiaki Shimoda‎ et al.
  • PloS one‎
  • 2015‎

Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.


Evaluation of microvasculopathy using dual-energy computed tomography in patients with chronic thromboembolic pulmonary hypertension.

  • Hiroyuki Onishi‎ et al.
  • Pulmonary circulation‎
  • 2021‎

The existence of microvasculopathy in patients with chronic thromboembolic pulmonary hypertension has been suggested. Recently, dual-energy computed tomography has been used to produce a sensitive iodine distribution map in lung fields to indicate microvasculopathy according to poor subpleural perfusion. Our aim was to evaluate the impact of microvasculopathy on pathophysiology in chronic thromboembolic pulmonary hypertension. According to the extent of poor subpleural perfusion, ninety-three interventional treatment-naïve patients were divided into poorly perfused (n = 49) or normally perfused group (n = 44). We assessed cardiopulmonary exercise test, right heart catheterization, and dual-energy computed tomography parameters for quantitative evaluation of lung perfusion of blood volume score. Lung perfusion of blood volume score in normally perfused group was significantly inversely correlated with pulmonary vascular resistance (pulmonary vascular resistance = 6816.1 × lung perfusion of blood volume score-0.793, R2 = 0.225, p < 0.01), but lung perfusion of blood volume score in poorly perfused group was not. Poorly perfused group had higher pulmonary vascular resistance (879 ± 409 dynes-s/cm5 vs. 574 ± 279 dynes-s/cm5, p < 0.01) and lower lung perfusion of blood volume score (22.1 ± 5.4 vs. 26.4 ± 6.6, p < 0.01) and % diffusing capacity for carbon monoxide divided by the alveolar volume (59.9 ± 15.4% vs. 78.8 ± 14.2%, p < 0.01). Perfusion of blood volume score in the normally perfused group showed an inverse correlation with pulmonary vascular resistance; however, that in poorly perfused group did not. Microvasculopathy might contribute to severe hemodynamics, apart from pulmonary vascular obstruction. In our experience, more than half of treatment-naïve chronic thromboembolic pulmonary hypertension patients have microvasculopathy.


An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension.

  • Gusty R T Ryanto‎ et al.
  • Nature communications‎
  • 2021‎

Pulmonary arterial hypertension is a progressive fatal disease that is characterized by pathological pulmonary artery remodeling, in which endothelial cell dysfunction is critically involved. We herein describe a previously unknown role of endothelial angiocrine in pulmonary hypertension. By searching for genes highly expressed in lung microvascular endothelial cells, we identify inhibin-β-A as an angiocrine factor produced by pulmonary capillaries. We find that excess production of inhibin-β-A by endothelial cells impairs the endothelial function in an autocrine manner by functioning as activin-A. Mechanistically, activin-A induces bone morphogenetic protein receptor type 2 internalization and targeting to lysosomes for degradation, resulting in the signal deficiency in endothelial cells. Of note, endothelial cells isolated from the lung of patients with idiopathic pulmonary arterial hypertension show higher inhibin-β-A expression and produce more activin-A compared to endothelial cells isolated from the lung of normal control subjects. When endothelial activin-A-bone morphogenetic protein receptor type 2 link is overdriven in mice, hypoxia-induced pulmonary hypertension was exacerbated, whereas conditional knockout of inhibin-β-A in endothelial cells prevents the progression of pulmonary hypertension. These data collectively indicate a critical role for the dysregulated endothelial activin-A-bone morphogenetic protein receptor type 2 link in the progression of pulmonary hypertension, and thus endothelial inhibin-β-A/activin-A might be a potential pharmacotherapeutic target for the treatment of pulmonary arterial hypertension.


Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

  • Katsunari Makino‎ et al.
  • PloS one‎
  • 2014‎

Endothelin (ET)-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF)-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF)-α and connective tissue growth factor (CTGF) were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.


Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis.

  • Sakiko Honda‎ et al.
  • Scientific reports‎
  • 2021‎

Senescent vascular cells are detected in atherosclerotic lesion, and its involvement in the development of atherosclerosis has been revealed; however, whether and the mechanism by which endothelial cell (EC) senescence is causally implicated in atherosclerosis remains unclear. We here investigate a role of EC senescence in atherosclerosis by utilizing EC-specific progeroid mice that overexpress the dominant negative form of telomeric repeat-binding factor 2 under the control of the Tie2 or vascular endothelial cadherin promoter. EC-specific progeria accelerated atherosclerosis in mice with target deletion of ApoE. Mechanistically, senescent ECs were markedly sensitive for inflammation-mediated VCAM-1 induction, leading to enhanced monocyte adhesion. Inhibition of NF-κB signaling abolished the enhanced inflammatory responses in senescent ECs, while NF-κB nuclear translocation in response to TNF-α were similar between young and senescent ECs. We found a higher association of VCAM-1 gene with active histone H3 trimethylated on lysine 4, leading to increased NF-κB accessibility in senescent ECs. Our data revealed that EC cellular senescence causes endothelial hyper-inflammability through epigenetic alteration, which consequently accelerates atherosclerosis. Therefore, EC senescence is a promising therapeutic target for the prevention and/or treatment of atherosclerotic disease in elderly population.


GPNMB plays a protective role against obesity-related metabolic disorders by reducing macrophage inflammatory capacity.

  • Adam Prabata‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Obesity is a global health problem that is often related to cardiovascular and metabolic diseases. Chronic low-grade inflammation in white adipose tissue (WAT) is a hallmark of obesity. Previously, during a search for differentially expressed genes in WAT of obese mice, we identified glycoprotein nonmetastatic melanoma protein B (GPNMB), of which expression was robustly induced in pathologically expanded WAT. Here, we investigated the role of GPNMB in obesity-related metabolic disorders utilizing GPNMB-deficient mice. When fed a high-fat diet (HFD), GPNMB-deficient mice showed body weight and adiposity similar to those of wild-type (WT) mice. Nonetheless, insulin and glucose tolerance tests revealed significant obesity-related metabolic disorders in GPNMB-KO mice compared with WT mice fed with HFD. Chronic WAT inflammation was remarkably worsened in HFD-fed GPNMB-KO mice, accompanied by a striking increase in crown-like structures, typical hallmarks for diseased WAT. Macrophages isolated from GPNMB-KO mice were observed to produce more inflammatory cytokines than those of WT mice, a difference abolished by supplementation with recombinant soluble GPNMB extracellular domain. We demonstrated that GPNMB reduced the inflammatory capacity of macrophages by inhibiting NF-κB signaling largely through binding to CD44. Finally, we showed that macrophage depletion by addition of clodronate liposomes abolished the worsened WAT inflammation and abrogated the exacerbation of metabolic disorders in GPNMB-deficient mice fed on HFD. Our data reveal that GPNMB negatively regulates macrophage inflammatory capacities and ameliorates the WAT inflammation in obesity; therefore we conclude that GPNMB is a promising therapeutic target for the treatment of metabolic disorders associated with obesity.


Loss of family with sequence similarity 13, member A exacerbates pulmonary hypertension through accelerating endothelial-to-mesenchymal transition.

  • Pranindya Rinastiti‎ et al.
  • PloS one‎
  • 2020‎

Pulmonary hypertension is a progressive lung disease with poor prognosis due to the consequent right heart ventricular failure. Pulmonary artery remodeling and dysfunction are culprits for pathologically increased pulmonary arterial pressure, but their underlying molecular mechanisms remain to be elucidated. Previous genome-wide association studies revealed a significant correlation between the genetic locus of family with sequence similarity 13, member A (FAM13A) and various lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis; however whether FAM13A is also involved in the pathogenesis of pulmonary hypertension remained unknown. Here, we identified a significant role of FAM13A in the development of pulmonary hypertension. FAM13A expression was reduced in the lungs of mice with hypoxia-induced pulmonary hypertension. We identified that FAM13A was expressed in lung vasculatures, especially in endothelial cells. Genetic loss of FAM13A exacerbated pulmonary hypertension in mice exposed to chronic hypoxia in association with deteriorated pulmonary artery remodeling. Mechanistically, FAM13A decelerated endothelial-to-mesenchymal transition potentially by inhibiting β-catenin signaling in pulmonary artery endothelial cells. Our data revealed a protective role of FAM13A in the development of pulmonary hypertension, and therefore increasing and/or preserving FAM13A expression in pulmonary artery endothelial cells is an attractive therapeutic strategy for the treatment of pulmonary hypertension.


Centella asiatica (Gotu kola) ethanol extract up-regulates hippocampal brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling in chronic electrical stress model in rats.

  • Dwi Cahyani Ratna Sari‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2019‎

Impairment of hippocampus function as a center for memory processing occurs due to stress. Centella asiatica L. (Gotu kola) is known to improve memory, intelligence, and neural protection although the precise mechanism is not well understood. This study aimed to investigate the effects of ethanol extracts of C. asiatica toward MAPK expression as down-stream signaling of brain-derived neurotrophic factor (BDNF).


Chondroitin sulfate N-acetylgalactosaminyltransferase-2 deletion alleviates lipoprotein retention in early atherosclerosis and attenuates aortic smooth muscle cell migration.

  • Imam Manggalya Adhikara‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Glycosaminoglycans (GAGs) play an integral role in low-density lipoprotein (LDL) retention in the vascular intimal layer and have emerged as attractive therapeutic targets for atherosclerosis. GAG biosynthesis involves the cooperation of numerous enzymes. Chondroitin sulfate N-acetylgalactosaminyltransferase-2 (ChGn-2) is a vital Golgi transferase that participates in enzymatic elongation of GAGs. Here, we investigated the effects of ChGn-2 gene deletion on the development of atherosclerosis. Partial carotid artery ligation was performed on ChGn-2-/-/LDLr-/- and ChGn-2+/+/LDLr-/- mice to induce diffuse intimal thickening (DIT). Aortic smooth muscle cells (ASMCs) were isolated to investigate cellular LDL binding and migration. Histological analysis of human coronary artery sections revealed that ChGn-2 was expressed in early and advanced atherosclerotic lesions. Deletion of the ChGn-2 gene significantly reduced LDL retention in the DIT mouse model. Furthermore, LDL binding, visualized using rhodamine-labeled LDLs, was dramatically reduced. Interestingly, a functional assay of ASMCs prepared from ChGn-2-/- mice displayed abrogation of platelet-derived growth factor (PDGF)-mediated migration via reduced PDGF receptor phosphorylation. Taken together, these findings indicate that ChGn-2 is functionally involved in the progression of atherosclerosis both in its early and advanced stages. Therefore, ChGn-2 may serve as a plausible target to treat atherosclerotic-related diseases in the future.


Activation of neuregulin-4 in adipocytes improves metabolic health by enhancing adipose tissue angiogenesis.

  • Dhite Bayu Nugroho‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Obesity often causes systemic metabolic disorders in close association with adipose tissue dysfunction. Adipose tissue contains well-developed vasculatures, and obesity mediates vascular rarefaction that causes hypoxia and triggers inflammation in adipose tissue. Adipose tissue-derived neuregulin-4 (Nrg4) is an immerging factor that is critically involved in metabolic homeostasis. We recently identified that Nrg4 is an angiogenic adipokine that plays an important role in maintaining adipose tissue vasculature. Here, we further validated its beneficial role in metabolic health primarily by enhancing adipose tissue angiogenesis. Targeted activation of Nrg4 in adipocytes improved metabolic health in mice under both normal and high fat dietary condition without changes in body weight. Activation of Nrg4 increased blood vessels in white adipose tissue, and ameliorated adipose tissue hypoxia under obese condition. Of note, inhibition of angiogenesis by sugen-treatment abolished the beneficial effects of Nrg4 on systemic metabolic health. Furthermore, targeted inhibition of Nrg4-ErbB signaling in adipose tissue vasculature using prohibitin binding peptide-conjugated nanocarrier abrogated the enhanced adipose tissue angiogenesis, and canceled the improved metabolic health induced by Nrg4 activation. These data further support a crucial role of Nrg4 in maintaining systemic metabolic homeostasis at least partially through enhancing adipose tissue angiogenesis.


In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma.

  • Seiji Taniguchi‎ et al.
  • Nature communications‎
  • 2023‎

Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.


Efficacy and Safety of Balloon Pulmonary Angioplasty for Patients With Chronic Thromboembolic Pulmonary Hypertension and Comorbid Chronic Obstructive Pulmonary Disease.

  • Hiroyuki Fujii‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Background Balloon pulmonary angioplasty (BPA) is a promising treatment modality for nonoperable chronic thromboembolic pulmonary hypertension (CTEPH). However, BPA for atypical CTEPH with concurrent chronic obstructive pulmonary disease (COPD) remains controversial owing to the risk of exacerbation of ventilation-perfusion mismatch. We aimed to evaluate the efficacy and safety of BPA for CTEPH with moderate or severe COPD. Methods and Results Data from 149 patients with CTEPH, who underwent BPA from March 2011 to June 2021, were retrospectively analyzed. Patients were divided based on COPD comorbidity: the COPD group (n=32, defined as forced expiratory volume in 1 second/forced vital capacity <70% and forced expiratory volume in 1 second <80% predicted) and the non-COPD group (n=101); patients with mild COPD (n=16) were excluded. Hemodynamic and respiratory parameters were compared between the groups. Hemodynamics improved similarly in both groups (reduction in pulmonary vascular resistance): -55.6±29.0% (COPD group) and -58.9±21.4% (non-COPD group); P=nonsignificant. Respiratory function and oxygenation improved in the COPD group (forced expiratory volume in 1 second/forced vital capacity [61.8±7.0% to 66.5±10.2%, P=0.02] and arterial oxygen partial pressure [60.9±10.6 mm Hg to 69.3±13.6 mm Hg, P<0.01]). Higher vital capacity (P=0.024) and higher diffusing capacity for lung carbon monoxide (P=0.028) at baseline were associated with greater improvement in oxygenation in the multivariable linear analysis. Lung injury per BPA session was 1.6% in the COPD group. Conclusions The efficacy and safety of BPA for nonoperable CTEPH in patients with comorbid COPD were similar to those in patients without COPD. Oxygenation and forced expiratory volume in 1 second/forced vital capacity improved in patients with COPD. BPA should be considered in patients with CTEPH with concurrent COPD.


Glycosaminoglycan overproduction in the aorta increases aortic calcification in murine chronic kidney disease.

  • Eko Purnomo‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Vascular calcification accompanying chronic kidney disease increases the mortality and morbidity associated with cardiovascular disorders, but no effective therapy is available. We hypothesized that glycosaminoglycans may contribute to osteoblastic differentiation of vascular smooth muscle cells during vascular calcification.


Diacylglycerol Kinase alpha is Involved in the Vitamin E-Induced Amelioration of Diabetic Nephropathy in Mice.

  • Daiki Hayashi‎ et al.
  • Scientific reports‎
  • 2017‎

Diabetic nephropathy (DN) is one of vascular complications of diabetes and is caused by abnormal protein kinase C activation as a result of increased diacylglycerol (DG) production in diabetic hyperglycaemia. Diacylglycerol kinase (DGK) converts DG into phosphatidic acid. Therefore, it is expected that the activation of DGK would ameliorate DN. Indeed, it has been reported that vitamin E (VtE) ameliorates DN in rat by activating DGK, and we recently reported that VtE specifically activates DGKα isoform in vitro. However, whether DGKα is involved in the VtE-induced amelioration of DN in vivo remains unknown. Therefore, we investigated the VtE-induced amelioration of DN in wild-type (DGKα+/+) and DGKα-deficient (DGKα-/-) mice in which diabetes was induced by streptozocin. Several symptoms of DN were ameliorated by VtE treatment in the DGKα+/+ mice but not in the DGKα-/- mice. Moreover, transmission electron microscopy of glomeruli and immunofluorescent staining of glomerular epithelial cells (podocytes) indicated that VtE ameliorates podocyte pathology and prevents podocyte loss in the DGKα+/+ mice but not in the DGKα-/- mice. We showed that VtE can ameliorate DN in mice and that DGKα is involved in the VtE-induced amelioration of DN in vivo, suggesting that DGKα is an attractive therapeutic target for DN.


Optimal Cut-Off of Tricuspid Regurgitation Velocity According to the New Definition of Pulmonary Hypertension - Its Use in Predicting Pulmonary Hypertension.

  • Keiko Sumimoto‎ et al.
  • Circulation reports‎
  • 2020‎

Background: The 6th World Symposium on Pulmonary Hypertension proposed that precapillary pulmonary hypertension (PH) be defined as mean pulmonary arterial pressure (mPAP) >20 mmHg instead of mPAP ≥25 mmHg. Peak tricuspid regurgitation velocity (TRV) >3.4 m/s is widely used to predict PH, but it is unclear whether this value remains reliable for the new definition of PH. Methods and Results: We found that the optimal cut-off value of peak TRV for 511 PH patients was >2.8 m/s, with a sensitivity of 89.5%, specificity of 73.4%, and area under the curve of 0.89 (P<0.001). Conclusions: Based on the new definition of PH, TRV >2.8 m/s can be considered to indicate a high probability of PH.


Endothelial cell senescence exacerbates pulmonary hypertension by inducing juxtacrine Notch signaling in smooth muscle cells.

  • Risa Ramadhiani‎ et al.
  • iScience‎
  • 2023‎

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary artery pressure caused by pathological pulmonary artery remodeling. Here, we demonstrate that endothelial cell (EC) senescence plays a negative role in pulmonary hypertension via juxtacrine interaction with smooth muscle cells (SMCs). By using EC-specific progeroid mice, we discovered that EC progeria deteriorated vascular remodeling in the lungs, and exacerbated pulmonary hypertension in mice. Mechanistically, senescent ECs overexpressed Notch ligands, which resulted in increased Notch signaling and activated proliferation and migration capacities in neighboring SMCs. Pharmacological inhibition of Notch signaling reduced the effects of senescent ECs on SMCs functions in vitro, and improved the worsened pulmonary hypertension in EC-specific progeroid mice in vivo. Our findings show that EC senescence is a critical disease-modifying factor in PAH and that EC-mediated Notch signaling is a pharmacotherapeutic target for the treatment of PAH, particularly in the elderly.


Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice.

  • Kengo Akashi‎ et al.
  • Arthritis research & therapy‎
  • 2016‎

Endothelin-1 (ET-1) is important in the pathogenesis of systemic sclerosis (SSc). ET-1 binds two receptors, endothelin type A (ETA) and endothelin type B (ETB). Dual ETA/ETB receptor antagonists and a selective ETA receptor antagonist are used clinically to treat SSc, and the effect of these antagonists on fibroblast activation has been described. However, the role of ETB receptor signaling in fibrogenesis is less clear. This study was conducted to evaluate the profibrotic function of ETB receptor signaling in a murine model of bleomycin (BLM)-induced scleroderma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: