Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Inhibition of sphingolipid synthesis improves outcomes and survival in GARP mutant wobbler mice, a model of motor neuron degeneration.

  • Constance S Petit‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay.

  • Andrew D Nguyen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: