Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 59 papers

Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

  • Minji Kim‎ et al.
  • Scientific reports‎
  • 2015‎

Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.


Nicotinamide alleviates kidney injury and pregnancy outcomes in lupus-prone MRL/lpr mice treated with lipopolysaccharide.

  • Kenta Imaruoka‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Systemic lupus erythematosus (SLE) increases the risk of preterm birth and preeclampsia (PE). The flares of SLE during pregnancy or after delivery are also problematic. We have previously demonstrated that nicotinamide (NAM), a non-teratogenic amide of vitamin B3, reduces inflammation and oxidative stress and improves PE-like phenotype and pregnancy outcomes in the mouse models of PE. The present study aimed to establish a model to investigate the pregnancy outcomes and flares of SLE in pregnant mice with SLE and to examine whether NAM is beneficial to pregnant mice with SLE. We used pregnant and non-pregnant lupus-prone MRL/lpr mice treated with or without a Toll-like receptor (TLR) ligand lipopolysaccharide (LPS) because TLR4 signaling reportedly exacerbates SLE and pregnancy; MRL/+ mice were used as controls. Blood pressure (BP) and urinary albumin excretion were increased only in the pregnant MRL/lpr-LPS mice. LPS together with pregnancy exacerbated glomerulonephritis, and the most severe inflammation was observed in the kidneys of the pregnant MRL/lpr-LPS mice. The shortening of pregnancy periods, increase in fetal demise percentage, and reduction in fetal weight were observed only in the pregnant MRL/lpr-LPS mice. NAM improved BP and kidney injury, prolonged pregnancy periods, and improved fetal growth in the pregnant MRL/lpr-LPS mice. The results suggest that SLE patients are prone to develop poor pregnancy outcome, and likely develop severe nephropathy and kidney inflammation. NAM may be a novel therapeutic option that improves kidney injury and pregnancy outcomes, thereby benefiting pregnant patients with SLE.


Contribution of pancreatic α-cell function to insulin sensitivity and glycemic variability in patients with type 1 diabetes.

  • Nobuyuki Takahashi‎ et al.
  • Journal of diabetes investigation‎
  • 2019‎

To evaluate the contribution of pancreatic α-cell function to the dawn phenomenon, insulin sensitivity, hepatic glucose uptake and glycemic variability in patients with type 1 diabetes.


Rapid selection of sulphadoxine-resistant Plasmodium falciparum and its effect on within-population genetic diversity in Papua New Guinea.

  • Toshihiro Mita‎ et al.
  • Scientific reports‎
  • 2018‎

The ability of the human malarial parasite Plasmodium falciparum to adapt to environmental changes depends considerably on its ability to maintain within-population genetic variation. Strong selection, consequent to widespread antimalarial drug usage, occasionally elicits a rapid expansion of drug-resistant isolates, which can act as founders. To investigate whether this phenomenon induces a loss of within-population genetic variation, we performed a population genetic analysis on 302 P. falciparum cases detected during two cross-sectional surveys in 2002/2003, just after the official introduction of sulphadoxine/pyrimethamine as a first-line treatment, and again in 2010/2011, in highly endemic areas in Papua New Guinea. We found that a single-origin sulphadoxine-resistant parasite isolate rapidly increased from 0% in 2002/2003 to 54% in 2010 and 84% in 2011. However, a considerable number of pairs exhibited random associations among 10 neutral microsatellite markers located in various chromosomes, suggesting that outcrossing effectively reduced non-random associations, albeit at a low average multiplicity of infection (1.35-1.52). Within-population genetic diversity was maintained throughout the study period. This indicates that the parasites maintained within-population variation, even after a clonal expansion of drug-resistant parasites. Outcrossing played a role in the preservation of within-population genetic diversity despite low levels of multiplicity of infection.


Beneficial effects of nicotinamide on hypertensive mice with impaired endothelial nitric oxide function.

  • Phillip K Huynh‎ et al.
  • Journal of experimental nephrology‎
  • 2020‎

Nicotinamide (Nam, amide form of niacin acid or nicotinate), a precursor for nicotinamide adenine dinucleotide (NAD+), is important for normal physiological function of organisms. Nam also suppresses mobilization of Ca2+ from sarcoplasmic reticulum into cytoplasm through inhibiting ADP-ribose cyclase. Previously, we have demonstrated that a pharmacological dose of Nam normalizes maternal blood pressure in mouse models of preeclampsia, a pregnancy related hypertensive disorder. We hypothesized that Nam could decrease blood pressure in hypertensive conditions unrelated to pregnancy. Nam at a dose of 500 mg/kg/day was given to wild type (WT) mice treated with L-NAME, endothelial nitric oxide synthase (eNOS)-null and renin transgenic (Renin-Tg) mice via drinking water. Blood pressure was measured by tail-cuff at different stages of treatment. The function and structure of kidneys of WT mice with L-NAME were determined at the end of the study. The gene expression of markers of inflammation and fibrosis in the kidneys of WT mice with L-NAME was also measured. Nam effectively prevented increase in blood pressure in L-NAME treated mice and decreased elevated blood pressure in eNOS-null mice. However, it did not alter high blood pressure in Renin-Tg mice. Nam prevented increase in urinary albumin excretion and collagen deposit in kidneys of WT mice treated with L-NAME. In addition, Nam significantly decreased the mRNA levels of the markers of inflammation and fibrosis in the kidneys of WT mice treated with L-NAME. Nam may execute beneficial effects on hypertensive conditions associated with eNOS dysfunction via suppressing inflammation. Because Nam is generally regarded as safe in humans, it merits further evaluation for the tailored treatment for the subgroup of hypertensive cases associated with impaired eNOS system.


The effect of aldosterone on adiposity - The role of glucose absorption in the small intestine.

  • Hidekazu Shirai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

We have previously demonstrated that manipulation of the renin angiotensin system (RAS) has large effects on digestive efficiency. However, the effects of aldosterone on body weight, adiposity, and glucose absorption in the intestine remains unknown. We here demonstrated that lack of aldosterone synthase (ASKO) in mice did not affect adiposity. In contrast, mice administered with aldosterone were resistant to diet-induced obesity. This is due to gastrointestinal loss of dietary glucose. As expected, ASKO mice had increased glucose absorption, whereas mice administered with aldosterone had reduced glucose absorption in the small intestine. Furthermore, the level of protein expression of sodium glucose transporter 1 (SGLT1) in the mucosa of the jejunum was higher in ASKO mice, and lower in mice administered with aldosterone than control mice. Our findings indicate that aldosterone plays an important role on SGLT-1-mediated glucose absorption in the small intestine.


Exploratory clinical characterization of experimentally-induced ulcerative colitis nonhuman primates.

  • Nobuyuki Takahashi‎ et al.
  • Heliyon‎
  • 2020‎

A limitation of currently used preclinical models of colitis is that disease and treatment assessment methods differ from clinically used methods. Thus, a modified Mayo score and an endoscopic index (EI) were developed for use in cynomolgus macaques with 0.25% dextran sulfate sodium (DSS)-induced ulcerative colitis. Macaques were treated with water with DSS for two weeks followed by water without DSS for two weeks. Disease activity was classified according to a modified Mayo score: stool consistency, rectal bleeding, colonoscopy examination and global assessment. Findings on colonoscopy were further graded according the Rachmilewitz EI. To demonstrate the sensitivity of the modified Mayo score and EI to therapeutic intervention, macaques were treated with the anti-inflammatory steroid prednisolone followed eight weeks later by the integrin antibody vedolizumab. Before DSS treatment, normal stool consistency and no rectal bleeding were observed. Colonoscopy demonstrated no mucosal abnormalities. Following the first DSS treatment, Mayo score and EI indicated signs of mild colitis. Following subsequent DSS treatments, mild to moderate colitis emerged with each DSS treatment and reduced signs of colitis were observed 2 weeks after DSS treatment termination. Prednisolone treatment during DSS treatment suppressed the emergence of colitis. Vedolizumab reduced signs of colitis during DSS treatment and further reduced signs of colitis that persisted after termination of DSS treatment. The current study demonstrated the potential of utilizing clinical outcome measures to assess experimentally-induced colitis in the macaque. Furthermore, signs of colitis, as assessed with the current methods, were reduced following therapeutic treatment. The current findings suggest that clinically relevant outcome measures in the macaque model of ulcerative colitis could be used to test novel treatments.


Osteocrin ameliorates adriamycin nephropathy via p38 mitogen-activated protein kinase inhibition.

  • Takaya Handa‎ et al.
  • Scientific reports‎
  • 2021‎

Natriuretic peptides exert multiple effects by binding to natriuretic peptide receptors (NPRs). Osteocrin (OSTN) binds with high affinity to NPR-C, a clearance receptor for natriuretic peptides, and inhibits degradation of natriuretic peptides and consequently enhances guanylyl cyclase-A (GC-A/NPR1) signaling. However, the roles of OSTN in the kidney have not been well clarified. Adriamycin (ADR) nephropathy in wild-type mice showed albuminuria, glomerular basement membrane changes, increased podocyte injuries, infiltration of macrophages, and p38 mitogen-activated protein kinase (MAPK) activation. All these phenotypes were improved in OSTN- transgenic (Tg) mice and NPR3 knockout (KO) mice, with no further improvement in OSTN-Tg/NPR3 KO double mutant mice, indicating that OSTN works through NPR3. On the contrary, OSTN KO mice increased urinary albumin levels, and pharmacological blockade of p38 MAPK in OSTN KO mice ameliorated ADR nephropathy. In vitro, combination treatment with ANP and OSTN, or FR167653, p38 MAPK inhibitor, reduced Ccl2 and Des mRNA expression in murine podocytes (MPC5). OSTN increased intracellular cyclic guanosine monophosphate (cGMP) in MPC5 through GC-A. We have elucidated that circulating OSTN improves ADR nephropathy by enhancing GC-A signaling and consequently suppressing p38 MAPK activation. These results suggest that OSTN could be a promising therapeutic agent for podocyte injury.


Valerenic Acid Promotes Adipocyte Differentiation, Adiponectin Production, and Glucose Uptake via Its PPARγ Ligand Activity.

  • Jun Takahashi‎ et al.
  • ACS omega‎
  • 2022‎

Although valerenic acid (VA) is an important marker compound for quantitative assessment of Valeriana officinalis products, little is known about its potential effects on adipocytes. We investigated the effects of VA on adipocyte differentiation, adiponectin production, and glucose uptake using 3T3-L1 adipocytes. The results showed that VA promoted adipocyte differentiation and increased the gene expression of adipogenesis and glucose uptake-related proteins, including peroxisome proliferator-activated receptor gamma (PPARγ), cytosine-cytosine-adenosine-adenosine-thymidine enhancer binding protein alpha (C/EBPα), adiponectin, and glucose transporter 4 (GLUT4). Additionally, cell cultures treated with VA had elevated adiponectin secretion and glucose uptake. The PPARγ luciferase assay indicated VA as a partial agonist of PPARγ, while the analysis using its antagonist, GW9662, and a docking simulation between PPARγ and VA revealed the binding site of VA as likely adjacent to the Ω loop pocket of PPARγ. Taken together, these results demonstrate that VA acts as a PPARγ partial agonist to promote adipocyte differentiation, adiponectin production, and glucose uptake.


Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer.

  • Nitin Roper‎ et al.
  • Nature communications‎
  • 2021‎

Immune checkpoint blockade (ICB) benefits only a small subset of patients with small cell lung cancer (SCLC), yet the mechanisms driving benefit are poorly understood. To identify predictors of clinical benefit to ICB, we performed immunogenomic profiling of tumor samples from patients with relapsed SCLC. Tumors of patients who derive clinical benefit from ICB exhibit cytotoxic T-cell infiltration, high expression of antigen processing and presentation machinery (APM) genes, and low neuroendocrine (NE) differentiation. However, elevated Notch signaling, which positively correlates with low NE differentiation, most significantly predicts clinical benefit to ICB. Activation of Notch signaling in a NE human SCLC cell line induces a low NE phenotype, marked by increased expression of APM genes, demonstrating a mechanistic link between Notch activation, low NE differentiation and increased intrinsic tumor immunity. Our findings suggest Notch signaling as a determinant of response to ICB in SCLC.


Myeloid cell-derived coagulation tissue factor is associated with renal tubular damage in mice fed an adenine diet.

  • Shu Yamakage‎ et al.
  • Scientific reports‎
  • 2021‎

Patients with chronic kidney disease (CKD) commonly exhibit hypercoagulability. Increased levels of uremic toxins cause thrombogenicity by increasing tissue factor (TF) expression and activating the extrinsic coagulation cascade. TF is induced in monocytes and macrophages under pathological conditions, such as inflammatory diseases. However, the role of monocyte myeloid cell TF in CKD progression remains unclear. We aimed to clarify this issue, and the present study found that patients with CKD had elevated levels of D-dimer, a marker of fibrin degradation, which was associated with decreased estimated glomerular filtration rate and increased serum levels of uremic toxins, such as indoxyl sulfate. In vitro studies showed that several uremic toxins increased cellular TF levels in monocytic THP-1 cells. Mice with TF specifically deleted in myeloid cells were fed an adenine diet to cause uremic kidney injury. Myeloid TF deletion reduced tubular injury and pro-inflammatory gene expression in the kidneys of adenine-induced CKD but did not improve renal function as measured by plasma creatinine or blood urea nitrogen. Collectively, our findings suggest a novel concept of pathogenesis of coagulation-mediated kidney injury, in which elevated TF levels in monocytes under uremic conditions is partly involved in the development of CKD.


ATR inhibition augments the efficacy of lurbinectedin in small-cell lung cancer.

  • Christopher W Schultz‎ et al.
  • EMBO molecular medicine‎
  • 2023‎

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.


Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation.

  • Chieko Ando‎ et al.
  • FEBS letters‎
  • 2009‎

Interaction between adipocytes and macrophages contributes to the development of insulin resistance in obese adipose tissues. In this study, we examined whether luteolin, food-derived flavonoid, could suppress the production of inflammatory mediators of the interaction between adipocytes and macrophages. Experiments using a coculture system of adipocytes and macrophages showed that luteolin suppressed the production of inflammatory mediators. In addition, activated macrophages were targets for the suppressive effect of luteolin. Luteolin inhibited the phosphorylation of JNK and suppressed the production of inflammatory mediators in the activated macrophages. The findings indicate that luteolin can inhibit the interaction between adipocytes and macrophages to suppress the production of inflammatory mediators, suggesting that luteolin is a valuable food-derived compound for the treatment of metabolic syndrome.


Brazilian propolis-derived components inhibit TNF-α-mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes.

  • Rie Ikeda‎ et al.
  • Biochimica et biophysica acta‎
  • 2011‎

Previous reports suggest that Brazilian propolis has multiple biological functions and may help to restore adiponectin expression and insulin sensitivity. However, little is known about the molecular mechanisms by which these compounds inhibit the downregulation of adiponectin.


Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes.

  • Tsuyoshi Goto‎ et al.
  • Journal of lipid research‎
  • 2011‎

Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.


Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation.

  • Min-Sook Kang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Obesity is characterized by an enhanced infiltration of macrophages to adipose tissues, which is closely associated with the low-grade inflammatory state and obesity-related pathologies such as type 2 diabetes and cardiovascular diseases. We showed here that dehydroabietic acid (DAA) is a potent PPARalpha/gamma dual activator. Furthermore, we examined the anti-inflammatory effects of DAA in stimulated macrophages and in the coculture of macrophages and adipocytes. DAA significantly suppressed the production of proinflammatory mediators such as MCP-1, TNF-alpha, and NO in stimulated RAW 264 macrophages and in the coculture of RAW 264 macrophages and 3T3-L1 adipocytes. These results suggest that DAA is a valuable medicinal and food component for improving inflammatory changes associated with obesity-related diabetes.


Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease.

  • Emiko Sato‎ et al.
  • Scientific reports‎
  • 2016‎

Sarcopenia is associated with increased morbidity and mortality in chronic kidney disease (CKD). Pathogenic mechanism of skeletal muscle loss in CKD, which is defined as uremic sarcopenia, remains unclear. We found that causative pathological mechanism of uremic sarcopenia is metabolic alterations by uremic toxin indoxyl sulfate. Imaging mass spectrometry revealed indoxyl sulfate accumulated in muscle tissue of a mouse model of CKD. Comprehensive metabolomics revealed that indoxyl sulfate induces metabolic alterations such as upregulation of glycolysis, including pentose phosphate pathway acceleration as antioxidative stress response, via nuclear factor (erythroid-2-related factor)-2. The altered metabolic flow to excess antioxidative response resulted in downregulation of TCA cycle and its effected mitochondrial dysfunction and ATP shortage in muscle cells. In clinical research, a significant inverse association between plasma indoxyl sulfate and skeletal muscle mass in CKD patients was observed. Our results indicate that indoxyl sulfate is a pathogenic factor for sarcopenia in CKD.


The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin enhances brown adipose tissue function, thereby preventing obesity in mice.

  • Kenichiro Takeda‎ et al.
  • FEBS open bio‎
  • 2018‎

To clarify the effects of a dipeptidyl peptidase-4 (DPP-4) inhibitor on whole-body energy metabolism, we treated mice fed a high-fat diet (HFD) with teneligliptin, a clinically available DPP-4 inhibitor. Teneligliptin significantly prevented HFD-induced obesity and obesity-associated metabolic disorders. It also increased oxygen consumption rate and upregulated uncoupling protein 1 (UCP1) expression in both brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), suggesting that it enhances BAT function. Soluble DPP-4 inhibited β-adrenoreceptor-stimulated UCP1 expression in primary adipocytes, and this inhibition was prevented in the presence of teneligliptin, or an extracellular signal-related kinase inhibitor. These results indicate that soluble DPP-4 inhibits β-adrenoreceptor-stimulated UCP1 induction and that chronic DPP-4 inhibitor treatment may prevent obesity through the activation of BAT function.


Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease.

  • Koichi Kikuchi‎ et al.
  • Nature communications‎
  • 2019‎

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.


Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus.

  • Takafumi Suzuki‎ et al.
  • Nature communications‎
  • 2017‎

NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings suggest that Nrf2 activity should be tightly controlled during development in order to maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice might create useful animal models to uncover novel physiological functions of Nrf2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: